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Abstract 

The noise of supersonic jet flows is due in part to the interaction between jet insta- 

bility waves and the jet shock-cell structure. If no counter-measures are taken, the 

emitted shock-cell noise will re-txcite certain instability wave modes at the nozzle 

lip and cause resonant feedback to occur. This feedback resonance, known as super- 

sonic jet screech, causes the jet to flap violently at discrete frequencies and generate 

very strong, narrow-banded tones. Jet screech has been shown to be a source of 

acoustic fatigue in the tail and nozzle structures of supersonic aircraft. It is therefore 

important that methods for predicting the screech amplitude be developed. While 

comprehensive screech models will require taking all elements of the feedback loop 

into consideration, a basic understanding of each element in isolation will also be 

necessary. Screech sound generation is one such element. 

In the present research we investigate the screech sound generation process, partic- 

ularly for high amplitude instability waves. We isolate the interaction of an unsteady 

shear layer with a single oblique shock. To obtain an overall understanding of the 

phenomenon with fewest simplifications, we study this problem through the numer- 

ical solution of the Navier-Stokes equations. We then consider idealizations which 

allow us to obtain a similar but wider range of results with specially linearized Euler 

equations. The findings of these results motivate the use of geometric acoustics to 

describe the screech generation process. 

The Navier-Stokes and Euler simulations have revealed important details about 

the interaction process, how the acoustic field results, and why screech is so loud. 

The mechanism for sound production is found to be fundamentally different and more 

efficient when the instability waves are the large vortices typical of screech, than when 

they are small disturbances. At high instability wave amplitude, sound generation 

process can be regarded as the periodic leakage of the highly perturbed shock through 

the shear layer as enabled by the passage of the shear layer vortices. The emitted 

sound levels at one acoustic wavelegth from the apparent source are nearly 10% 

of the shock strength. As the instability waves are reduced from vortices to small 

disturbances, the acoustic levels fall exponentially with instability wave amplitude, 

IV 



and their wave form broadens. Geometrical acoustics can be used to explain the 

leakage effect at high instability wave amplitude. We conclude that the mechanism 

for high amplitude screech generation is an unsteady modification to the velocity field 

by the instability waves that permits the incident shock to refract through the shear 
layer. 
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Nomenclature 

Roman Symbols 

A Amplitude of Stuart mixing layer 

a Streamwise wave number in Stuart mixing layer 

o, b, c, d Coefficient on right hand side of Pade filter 

fli, a-2,0-3 Coefficients in Pade scheme for first derivative 

äi,ä2,03 Coefficients in Pade scheme for first derivative boundary stencils 

b Wave front phase gradient vector (Ch. 6) 

b Velocity difference coefficient in Stuart mixing layer 

fri, &2, &3 Coefficients in Pade scheme for second derivative 

C Stuart vortex coefficient related to A 

c Speed of sound 

cjj Reference speed of sound 

CENo{i,rn)    Coefficient matrix in ENO scheme (§2.2.4) 

Op Specific heat at constant pressure 

Cray Speed of sound along incident wave-front (Ch. 6) 

c„ Specific heat at constant volume 

Do Core diameter of free vortex 

di Elements of inviscid flux derivative from characteristic analysis (i = 1,..., 4) 

e Internal energy per unit mass 

Et Total energy per unit volume (kinetic and energy) 

Fi, F2 Inviscid flux vectors in Navier Stokes Equations 

/ Forcing and acoustic frequency 

/o Frequency of most unstable mode 

/i Solution values at node i, as used in Pade scheme 

fi First derivative of solution values at node i, as used in Pade scheme 

//' Second derivative of solution values at node i, as used in Pade scheme 

/+/~ Positive/negative split fluxes (§2.2.4) 
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5  

1* 

fj+1/2 Numerical flux at j + 1/2 cell face (§2.2.4) 

fr Buffer zone shape function scaling parameter 

f Boundary evaluations of Pade filter 
h Enthalpy per unit mass 

h(a) Analytic mapping function for stretched mesh 
i index number 

k Thermal conductivity 
k Fourier mode index 

k Acoustic wave number vector (Ch. 6) 
K Instability wave amplitude 

k' Fixed grid wave number k(Ay)Ny=29i (Appendix B) 
ko Reference wave number (Ch. 6) 
Ku, Kv Components of instability wave amplitude K 
I Characteristic wave flow length scale (Ch. 6) 
Li Characteristic variables (i = 1,..., 4) 

L*o Reference length used to nondimensionalize equations 

^sponge Length of sponge (normal to boundary) 
Ly Height of computational domain 
m index of summation in ENO scheme 
m Velocity-parallel unit vector (Ch. 6) 
mi,m2,m3 Grid mapping function slopes 

M High speed stream Mach number 

M0 Reference Mach number 
Mc Instability wave convection Mach number 

Mjet Jet Mach number 

Mshock Strength of shock measured in terms of normal inflow Mach number 
N Maximum nodal index in grid (Ch. 2) 
N Number of Fourier samples in time 
n Temporal index in Fourier summation 
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n Wave-front normal vector 

Nfilter Time steps between filter applications 

Nk Number of Fourier modes 

Nsponge Number of points in a damping sponge (normal to boundary) 

Nx, Ny   Number of mesh points in x and y 

p Pressure 

p1 Acoustic pressure 

PQ Reference pressure 

Pr Prandtl number 

r Distance from apparent source 

R Position vector (Ch. 6) 

q dS/dt (Ch. 6) 

qi Heat conduction (Ch. 2) 

Q State variable vector in Navier Stokes equations 

Q' State variable vector in linearized Euler equations 

Qref Reference solution used in damping sponge 

Fi, F2 Inviscid flux vectors in Navier Stokes Equations 

r Order of ENO scheme (Ch. 2) 

r Distance from acoustic source 

ra, rb Grid mapping control points in normalized physical space 

r(s) Unsealed grid mapping function 

R Specific gas constant for air 

72.   . Reflection coefficient 

ft Reynolds number based on reference length 

S Viscous terms (generically) 

s Shock cell spacing (Ch. 1) 

s Grid coordinate in computational space (Ch. 2) 

s Coordinate along initial wave-front (Ch. 6) 

So, s& Grid mapping control points in computational space 



t Time 

tn Time at time-step n 

T Temperature 

T Period of oscillation; 1// 

T0* Reference temperature 

T^ Inflow farfield temperature 

UQ Reference velocity 

U Bufferzone velocity coefficient 

uc Instability wave convection speed 

Umax Maximum value of U, usually at edge of domain 
Ui Velocity component in the i-th. direction 

Ük Arth Fourier mode of velocity u 

V Base flow velocity field (Ch. 6) 

w Compression or G-wave width at shear layer 
w Grid wave number kAx 

wa,wb Grid mapping shape parameters 
X Position vector 

•Ea 5 *^6 Boundary zone limits 

x{ Cartesian coordinate in the i-th direction 

•E offset Streamwise distance between source and edge of extra spor.ge 

•^■miny^vnax Extent of domain in x-direction 

■ESTCI Vsrc Apparent location sound source 

•^reflection Streamwise position of shock reflection at shear layer 
Xi, Xi Component unit normals 

Vn Solution at time-step n in temporal differencing scheme 

Vo y-coordinate of centerline of shear layer 

yminiVmax Extent of domain in y-direction 

Greek Symbols 

a    Coefficient in left hand side of Pade filter 

• 
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a 

a' 

a*> a'y 

ß 
ß 
7 
8 

6(a) 

Öij 

Öshock 

OStuart 

AL 

Ap 

Ap' 

ApG-wave(Q 

^Pvortex 

At 

Ax, Ay 

Axshock 

AysL 

AUJ 

e 

V 
A 

\i 

/V 
MM) 

Maximum value of \u\ + c in x-direction (§ 2.2.4) 

Real and imaginary parts of eigenvalue from stability analysis 

1 /a (alternate filter coefficient) 

Filter coefficients for each direction 

Incident shock angle, measured about apparent source 

\JMl - 1 (Appendix A) 

Ratio of specific heats 

Initial vorticity thickness of shear layer 

Streamwise vorticity thickness distribution 

Kronecker delta tensor 

Width of shock 

Vorticity thickness of Stuart mixing layer 

Effective streamwise shift in instability waves forced at different levels 

Compression wave or G-wave amplitude 

Mean to peak amplitude of acoustic waveform 

Pressure distribution of G-wave 

Pressure deficit of free vortex 

Time step 

Grid node spacings 

Streamwise distance over which shock oscillates 

Width of grid region devoted to resolving shear layer 

Increment in vorticity contour 

Small parameter 

Normalized coordinate in Stuart mixing layer 

Acoustic wavelength 

Instability wavelength 

Coefficient of viscosity 

Reference coefficient of viscosity 

Mach angle as function of Mach number 
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V 

v{M) 

Q 

rl; 

P 

Pi 
*(x) 

& extra 

Umax 

e 
"min 

e 
#1-2 

#2-3 

&    . 

C 
Speafc 

Kinematic viscosity 

Prandtl Meyer function 

Forcing and acoustic angular frequency 

Characteristic frequency scale of base flow (Ch. 6) 

Bufferzone inner boundary scaling parameter 

Density 

Reference density 

Damping sponge distribution coefficient 

Distribution coefficient for "extra" damping sponge 

Maximum value of a, usually at domain boundary 

Characteristic variable (Ch. 6) 

Viscous stress tensor 

Observer angle about acoustic source 

Minimum transmission angle (Ch. 6) 

Phase function of acoustic wave front 

Flow turning angle after passing through oblique shock 

Flow turning angle after passing through reflected expansion wave 

Normalized coordinate for describing G-wave and extra sponge 

Normalized streamwise coordinate in Stuart mixing layer 

Normalized coordinate within compression wave 

Normalized coordinate within reflected expansion wave 

Vorticity in Stuart mixing layer 

Peak vorticity in Stuart mixing layer 

Superscripts and Subscripts 

Fourier coefficient 

Vector 

Base flow variables (Ch. 4) 

Fluctuation or perturbation 

Dimensional quantity 

Reference conditions 
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( )oo    Upstream conditions 

Abbreviations 

CFL Courant-Friedrichs-LeTvy number 

DNS Direct Numerical Simulation 

ENO Essentially Non-Oscillatory scheme 

RK3 Third Order Runge-Kutta method 
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Chapter 1 

Introduction 

1.1    Motivation and Background 

The mechanism by which sound is produced in supersonic jets has been the focus of 

intense research for several decades. The level of noise generated by supersonic jets far 

exceeds the levels generated by their subsonic counterparts. The inability to efficiently 

suppress this noise has been a primary impediment to the development of a modern 

high speed civil transport. In subsonic jets the mechanism for sound generation is the 

evolution and decay of turbulent structures; in supersonic jets, there is, besides Mach 

wave radiation, the additional element of "shock-cell noise", that is, sound generated 

by the interaction of jet instability waves and the jet's shock-cell structure. The 

mechanism by which shock-cell noise is produced is not understood in detail. Despite 

this, accurate predictions of broadband shock-cell noise (i.e., noise arising from the 

interaction broad-spectrum, turbulent instability waves and the shock-cell structure) 

have been obtained. Conversely, the acoustic amplitude of a resonant shock-cell noise, 

supersonic jet screech, has proven difficult to predict. 

The resonance in supersonic jet screech arises from a feedback process. Instability 

waves travel down the jet, imparting motion in the shock-cell structure to produce 

the shock-cell noise. Part of this sound travels upstream outside the jet and interacts 

with the thin shear layer at the nozzle lip to excite additional instability waves (see 

Figure 1.1). The phase relationship necessary for positive reinforcement and feedback 

1 
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Wave Length 

Figure 1.1: Schematic of imperfectly matched jet undergoing supersonic jet screech 
feedback. 

is satisfied only by certain frequencies. As a result, the sound spectrum of a screeching 

jet is characterized by a discrete tone of an acoustic amplitude which exceeds that of 

broadband noise (see Figure 1.2). Due to the feedback, it is not uncommon for the 

instability waves of screeching jets to become very large; such jets exhibit an extreme 

flapping motion only a few jet diameters downstream of the nozzle. 

Although the intensity of screech creates an undesirable noise signature for high 

speed aircraft, the impact of screech on the aircraft's structural components is the 

dominant design concern. Screech can cause sonic fatigue in nozzle and tail surfaces 

when screech frequencies coincide with resonant modes of these structures [10]. Sonic 

fatigue failures have been observed in aircraft such as the F-15 [54], where cross- 

coupling of screech in the twin plume jets appear to make the problem even more 

troublesome. For these reasons the need to understand the mechanisms governing 

supersonic jet screech is paramount. 
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Figure 1.2:   Spectrum of noise field from supersonic jet undergoing screech.   Jet is 
rectangular (1.4 x 1.6 cm) with Mach number Mjet = 1.5. From Raman [44]. 

The difficulty in predicting screech amplitude stems from the complexity of the 

feedback dynamics in supersonic jet screech. The components of the feedback loop, 

namely, instability wave growth, shock-cell noise generation, acoustic propagation, 

and re-excitation of the instability waves, will affect those dynamics. In the present 

research, we move away from the overall feedback process and investigate simply the 

shock-cell noise component, i.e., how the instability-wave shock-cell interaction pro- 

duces sound. Using a model problem we isolate a portion of the shock-cell structure 

so as to create a single source. We study the interaction, particularly for the high am- 

plitude instability waves typical of screech, with numerical simulations and simplified 

analyses. We conclude that the mechanism for sound generation at high instability 

amplitude is much more efficient than the mechanism at low instability wave ampli- 

tude. The jet shear layer is sufficiently distorted by high amplitude instability waves 

to allow portions of the confined shock waves to escape. We propose that this finding 

explains in part how screech tone levels can exceed broad-band shock associated noise 
levels by orders of magnitude. 



CHAPTER 1.   INTRODUCTION 4 

1.2    Review of Past Work 

In this literature review, we survey past work in supersonic jet screech and, more 

generally, shock-cell noise. While the focus of the work in this thesis does not cover 

the overall screech process, the issues encountered in jet screech help motivate and 

guide the present work. We begin with a review of the initial discovery of screech, 

which we follow with modern interpretations. 

1.2.1    Screech: Powell's early work 

The discovery and basic description of the screech phenomenon are credited to Pow- 

ell [40, 39, 41] for his work on rectangular and round choked jets in the 1950s. This 

discovery also constitutes the discovery of shock-cell noise in general. In these ex- 

periments, Powell utilized spark schlieren visualization and basic acoustic sampling 

techniques to deduce the existence of feedback and describe the directivity of the 

sound field. It is instructive to review his basic findings as they remain largely valid 

in our present understanding. In these works, Powell's most important contributions 

consist of the following findings: 

1. The screech frequency is related to the regular shock wave spacing. 

2. The sound field is highly directional and can be explained in terms of a phased 

array of stationary sources. 

3. Round jets exhibit a frequency "staging" behavior; i.e., a propensity to occa- 

sionally experience large jumps in screech frequencies with a small changes in 

nozzle pressure ratio. 

4. A gain criterion must be satisfied for screech to exist. 

Powell reasoned that the narrow frequency band he observed in the acoustic field of 

supersonic, choked jets requires that there be some mechanism for frequency selection. 

Having studied the edge-tone phenomenon at length [38], he was aware that acoustic 

feedback and re-excitation of the instability waves could provide a mechanism for this 



CHAPTER 1.   INTRODUCTION 5 

selection.  For feedback to exist, a phase relation about the feedback loop must be 

preserved over a wide range of operating conditions.  The jet shear layer instability 

wave was identified as the likely mechanism for transporting the disturbance signal 

downstream. The interaction of these waves with the ends of the shock cells, which 

were spaced quasiperiodically, was observed to generate the sound. The emitted sound 

would then transport the signal back upstream, outside the jet, to the nozzle lip, where 

it would re-excite the instability waves. Powell verified the existence of feedback in 

supersonic jet screech by showing the following phase condition for screech frequency 

to be valid: 
N + (j>      h      h-lX, 

Powell also observed in his experiments that the acoustic waves at the fundamental 

frequency appeared strongest in the upstream direction; at the harmonic frequency he 

found a strong beaming to the side of the jet. Given the quasiperiodic nature of the 

shock cell structure, Powell proposed that the acoustic field was made up of a series of 

monopole sources, emitting sound in phase delayed fashion such that sound emitted at 

the fundamental frequency interferes constructively in the upstream direction. The 

directivity pattern which results from this analysis for three equally spaced, equal 

strength sources is given for the fundamental mode by 

1     2 

D' = 3 + 3COS 
2irs 

(1-Mccos0) 

and for the harmonic by 

1      2 
Uh = - + - cos 

3     3       L Ac 

Ac 

4L7TS 
(1-Mccos0) 

(1.2) 

(1.3) 
fThe left hand side represents some multiple of the acoustic period 1//; iV is a positive integer 

and 0 < <j> < 1 represents phase lags which may occur at the source site or the nozzle lip during 
re-excitation. The first term on the right hand side represents the instability wave travel time from 
nozzle lip to the source site (traveling distance h at speed Uc), while the second term represents 
the minimum time between the time of production of a given phase of an acoustic wave and the 
time an acoustic wave of the same phase reaches the nozzle lip. I is the integer number of acoustic 
wavelengths A spanning the distance h. h itself is approximately an integer multiple of the shock 
cell length s for overexpanded jets, as one would obtain for a choked nozzle. 
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Figure 1.3: Left Schematic of phased array of monopole sources, spaced at shock cell 
interval s. Source phase is triggered by passage of instability waves of wavelength 
Ac and phase speed Uc.    Right   farfield relative directivity given by fundamental 
frequency ( , Equation 1.2) and harmonic ( , Equation 1.3) for s/Ac = 0.538, 
Mc = 0.6 (see [40]). 

Ac is the wavelength and Mc is the Mach number of the jet disturbances; s is the shock 

cell length; and 8 is the observer angle measured from the downstream direction. The 

phased array of sources and the resultant directivity are depicted in Figure 1.3. 

The phased array source model also yields a prediction for the screech frequency. 

If one requires maximum constructive interference in the upstream direction, then 

one can obtain the amplitude condition for screech frequency: 

/ = 
Uc. 

s(l + Me) 
(1.4) 

where Mc is UJc. Equation 1.4 is a more restrictive version of Equation 1.1. 

The basic screech findings were found to apply to both rectangular and round jets. 

In addition to flapping modes, however, Powell [38] also observed axisymmetric and 

helical modes in round jets. Further, the transitions among these modes, as nozzle 

pressure is raised, were found to occur abruptly and exhibit hysteresis (see Figure 1.4) 

or to be indeterminate. Powell referred to this mode switching phenomenon as "stag- 

ing" . He suggested that the mode switching occurred to favor oscillation modes which 

satisfy both feedback phase (Equation 1.4) and gain criteria (described below). 
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Figure 1.4: Dominant screech frequency as function of nozzle pressure in round iet 
from Powell [39]. ' 

Powell identified the components that make up the feedback loop, and formulated 

a feedback gain criterion. The condition for screech to be self-sustained is 

QVMVd > 1. (1.5) 

Here, q is the gain associated with the propagation of eddies in the jet, rjs is efficiency 

of the interaction of these eddies with the shock cell structure in producing sound, 

Vt is efficiency associated with the propagation of the sound upstream, and r)d is 

the efficiency by which the sound waves excite additional eddies at the nozzle lip. 

In modern terminology, we refer to the last process as acoustic receptivity. These 

concepts are particularly important because they lay the foundation for formulating 

a prediction of screech amplitude. With regard to the objectives in the present work, 

we are interested most in understanding the mechanisms that influence 77,. 
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1.2.2    Screech: Modern interpretation of Powell's early work 

The body of research devoted to understanding screech is large. After Powell, the 

focus of the much of the early experimental work [4, 5, 7, 37, 77] has been based 

on visualizing the jet and the acoustic field. Seiner and others conducted numerous 

experiments in supersonic jets [30, 56, 80] to accurately characterize the shock-cell 

structure and acoustic field. Others have investigated screech under conditions which 

may more closely approximate realistic flight configurations. These include the effects 

of forward flight [10], hot jet cores [17], and coaxial jets [3]. The twin jet configuration 

has been studied [49, 50, 55] and has been shown to result in screech of increased inten- 

sity. The effects of unusual nozzle geometry on screech have been studied by several 

[29, 34, 45, 72, 75], including beveled, elliptical, and triangular nozzle geometries. 

Much progress has been made in the understanding of jet screech, particularly 

in the prediction of the screech frequency over a wide range of operating conditions. 

The prediction of screech amplitude has been elusive. The eventual saturation of the 

feedback mechanism involves many processes throughout the feedback loop, and most 

of these processes and their dependence on each other are still poorly understood. 

Raman [46, 47] gives a comprehensive overview research in jet screech and the state 

of our current understanding, and provides an assessment of the direction the research 

needed to make screech amplitude prediction a reality. Tam [65, 64] ffi/es broader 

reviews of supersonic noise, including screech and broadband shock-ce1! noise. 

The factors affecting the screech frequency of round and rectangular jets under 

a variety of operating conditions are now well understood within a single oscillation 

mode type. Tam et al. [71] have developed a reliable prediction of screech frequency 

fs based on amplitude condition (Equation 1.4). They refine estimates of shock cell 

length, incorporate empirical factors, and accommodate "hot core" jets. The screech 

frequency for a round jet operating in the helical oscillation mode is given by: 

f.Di 
Ui 

0.67 

(Mf-l) 1/2 1 + 
0.7 Mj 

[l + (7-l)M?/2] 1/2 © 
1/2 

T -1 

(1.6) 
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Figure 1.5:  Prediction of screech frequency due to Tain et al. [71] (Equation 1.6) 
compared to experimental results of of Seiner and Norum [56], Yu and Seiner [80], 
Davies and Oldfield [4, 5], Powell [39], Jungowski [15], and Seiner et al. [55]. (Origi- 
nally compiled by Tam [65].) 

Dj is the fully expanded jet diameter, obtained by conserving mass flux in the off- 

design condition- [73], and is related to the shock cell length through fully expanded 

jet Mach number M,. Tam et al. use the approximation Uc = 0.7«., (jet velocity) 

based on experiment. Tr/T^, the ratio of the reservoir temperature to the ambient 

temperature, compensates for the modification to the jet velocity at higher jet tem- 

peratures for given Mach number. In Figure 1.5 we reproduce from Tam et al. [71] 

the comparison of Equation 1.6 to experimental results. 

The superposition of a phased array of sources appears to offer the best explana- 

tion for screech directivity in round jets. Norum [29] verified the directivity result of 

Powell's simple source model using parameters obtained from round jet experiments. 

His directivity measurements (fundamental and harmonic modes) agreed well with a 

Powell-type source model made up of nine sources following a parabolic amplitude 

distribution. However, he also found the distribution to be largely insensitive to the 

distribution; further, three sources were sufficient to capture the dominant features. 
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In rectangular jets of high aspect ratio, the superposition of sources may be unim- 

portant. Raman [46] notes that in such jets, the screech field often consists of a "feed- 

back shock", or sound waves with a compact wave forms, which appear to originate 

from a single source. They are visible in photographs appearing in Raman [44, 46], 

Poldervaart et al. [37], Hammitt [7], and Krothapalli et al. [18], all of which were 

based on high aspect ratio supersonic jet flows. The dominance of a feedback shock 

is also clear in the acoustic measurements of Krothapalli et al. [18]; the fundamental 

frequency is dominant in all directions, suggesting the absence of multiple sources. 

The dominance of a single source is attributed to the rapid growth of instability waves 

in these jets. Only at a certain streamwise location would conditions be optimal for 

sound generation. Upstream of this point the instability waves are much weaker; 

downstream, the shock cell structure is mixed out. 

The basic mechanisms underlying the staging phenomenon are better understood. 

Tarn et al. [66] show compelling evidence that the frequency jump in staging can 

be attributed to changes in jet instability as operating conditions change. They 

examined the inviscid linear stability characteristics of the axisymmetric and helical 

jet oscillation modes (based on the stability analyses presented in Tarn and Burton [67] 

and Tarn and Hu [69]) and found that for low jet Mach number the peak growth rate of 

the axisymmetric mode is larger than any helical mode. Conversely, the peak growth 

ratf of the first helical mode is dominant at higher jet Mach number (Mj > 1.3). 

Tins is consistent with the observed mode switch. 

It is clear, however, that a frequency prediction of screech which includes staging 

may not be easily realized. Staging has been observed over a broad range of operating 

conditions, including in rectangular jets [61], and the dominant modes have been 

classified [29]. But staging has been shown to exhibit a great sensitivity to facility 

design, such as the size and placement of surfaces at the nozzle exit [29]. Under 

certain conditions the screech frequency is unstable; under others, frequency hysteresis 

has been observed. These are manifestations of the complexity introduced by the 

nonlinearity of the feedback process. 

Although Powell's gain criterion (Equation 1.5) has yet to form the basis of much 

work in jet screech, the work of Cain et al. [1, 2, 16] represents one exception. Cain 
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et al. formulated a component-based model to predict the amplitude of screech by 

forming simplified models of the four elements comprising the screech feedback loop. 

These therefore included separate models for instability wave growth in jets, shock 

instability wave interaction to generate sound, acoustic wave propagation, and shear 

layer receptivity to sound at the nozzle trailing edge. The basis of these models 

are a mixture of theoretical analyses and empirical data. The combined models are 

implemented via a neural-net algorithm. Although their preliminary results were 

encouraging, wherein they obtained the correct screech frequency and and amplitude 

of the fundamental mode, the general applicability of these results was unclear. 

Much of the analysis of screech to date has been based on linear and only weakly 

nonlinear concepts. The feedback process and the high jet oscillation amplitudes 

indicate that the process is strongly nonlinear. One assumption implicit in the screech 

gain analysis is that an oscillation mode will occur in isolation. There is ample 

evidence instead that multiple simultaneous screech modes are possible [4, 5, 39]. 

Walker et al. [76] make use of nonlinear spectral analysis to show the presence of 

nonlinear phase locking between modes in a two-dimensional, screeching jet. Another 

example of nonlinear phenomena occurring in screech includes the modulation of 

the instability waves by the shock cell structure [48], both in terms of fluctuation 

amplitude and propagation speed. It is clear that more work characterizing the 

nonlinear aspects of the screech process needs to be carried out before a reliable 

screech model is obtained. 

1.2.3    The role of fine scale turbulence in screech 

The screech mechanism has been linked to the formation and growth of large scale 

disturbances in the jet shear layer which interact with the shock cell structure to 

produce sound. However, in most experiments, where the jet Reynolds numbers based 

on jet width are of the order of 106, fine scale turbulence will be present. Indeed, 

most of these experimental results exhibit the broad-band shock noise, which arises 

from the interaction of fine scale, comparatively random turbulence and the shock cell 

structure.  Hu and McLaughlin [13] show definitively that the fine scale turbulence 



CHAPTER 1.   INTRODUCTION 12 

is extraneous to the basic screech phenomenon. They studied low Reynolds number 

(Re = 8000), underexpanded, supersonic jets issuing from round nozzles. Their jets 

are shown to contain shock cell structures typical of high Reynolds number jets, with 

only a small deviation in shock cell spacing. Their acoustic spectra are dominated by 

the screech tone but do not contain broad-band shock noise. The screech frequencies 

agree well with their high Reynolds number counterparts. 

Although secondary, the presence of fine scale turbulence should subtly influence 

screech behavior. First, turbulence will modify the mean jet profile and thereby alter 

its stability characteristics; the growth rate of instability waves influence the feedback 

criterion for screech (Equation 1.5). Secondly, the modification in growth rate will 

modify the shock cell spacing and core length. Screech frequency depends on shock- 

cell spacing (Equation 1.4). Finally, the presence of turbulence will tend to diffuse 

the shock strength with each successive reflection down the jet; this will modify the 

sound generated. 

1.2.4    Numerical Simulations 

The direct simulation of screech is a formidable challenge. The problem is charac- 

terized by disparate length scales and disturbance amplitudes. The acoustic wave- 

length is typically over 20 times larger than the initial thickness of the jet mixing 

layer [63]. The sound pressure levels can be five or six orders of magnitude below the 

hydrodynamic fluctuations associated with the instability waves. Furthermore, the 

computational demands of shock capturing and boundary conditions add to the cost 

of carrying out such a simulation. With the dramatic rise in computational power 

of computers recently, complex simulations of screech have become increasingly a 

practical reality. 

Shen and Tarn [57] have conducted simulations of an axisymmetric jet undergoing 

screech and report good agreement with experiments. They solve the compressible 

Navier-Stokes equations using the dispersion-relation preserving (DRP) scheme on a 

multi-block domain of discontinuous grid density. An artificial damping scheme is 

required to suppress numerical instabilities which arise at the sub-block boundaries. 
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The k-e turbulence model is added to obtain Reynolds numbers comparable to those 

in experiments. The time averaged results for velocity profiles and the shock cell 

spacing agree very well with experiments. The acoustic field is found to compare 

favorable in terms of directivity and intensity. In particular, the strong upstream 

directivity of the screech tone is predicted. 

Rona and Zhang [52] adopt a hybrid computational approach to obtain far-field 

estimates of the radiated screech field. The advantage of this approach is that the re- 

gion over which time-accurate viscous computations must be carried out is limited to 

the aerodynamic region immediately around the jet. Using the k-u> turbulence model, 

Rona and Zhang solve the short-time Reynolds averaged Navier-Stokes (RANS) equa- 

tions to compute the source terms in Lighthill's acoustic analogy [21]. They then inte- 

grate these source terms to solve a short-time averaged version of Lighthill's equation. 

The RANS equations are solved using a second order finite volume spatial discretiza- 

tion and the four-step Runge-Kutta time advancement scheme, whereas the Lighthill 

equation source volume is integrated with a second-order central difference method. 

An axisymmetric, over-expanded, Mach 2 jet is found to experience screech feedback 

with some frequency jitter, possibly due to the dynamic modulation of instability 

waves by the shocks. The shock motion is observed to radiate sound as the shocks 

jump upstream from one instability wave vortex to the next. This is in agreement 

with the findings of Manning and Lele [26, 27], which we report in detrii in Chapter 3. 

Finally, the overall sound pressure level in the forward arc of the far field is found 

to agree well with the measurements of Norum and Seiner [30], although the screech 

frequency is underpredicted. 

1.2.5    Shock Instability-wave Interaction as a Source of Sound 

Powell and others offer sufficient evidence to conclude that the interaction of distur- 

bances in the imperfectly expanded supersonic jet and its enclosed shock cell structure 

give rise to stationary sources of sound. Shock-cell noise may be made up of a wide 

band of frequencies, as in broadband shock noise, or a narrow band, as in screech, 

and the two forms usually co-exist (see, e.g., Figure 1.2).  An understanding of the 
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shock noise generation process requires one to understand the nature of the jet dis- 

turbances, the shock cell structure, and how they interact to produce sound. In this 

section we recount past observations of shock motion associated with supersonic jet 

screech. We then survey the evolution of shock instability wave interaction models 

for both broadband shock-cell noise and screech. We note that in screech, shock mo- 

tion is generally observed to be large, whereas in shock-cell noise modeling, the jet 

instability waves have been assumed to be small. 

Shock-cell structure and motion 

The shock cell structure in a supersonic jet arises from the pressure mismatch that 

occurs at the nozzle exit when the jet is not fully expanded. For weak under- or over- 

expansion, a simple shock cell system develops whereby oblique shocks or expansions 

emanate from the nozzle lip, cross the jet centerline and impinge on the jet shear layer 

opposite the original nozzle lip. The waves then reflect as the waves of the opposite 

type (i.e., compression waves reflect as expansion waves and vice versa) to maintain 

pressure continuity at the jet boundary. The process then repeats itself in a periodic 

manner down the jet to produce the familiar shock-cell, or shock-diamond, pattern 

until turbulent mixing destroys the supersonic jet core. The jet flow behaves as a 

waveguide for the disturbances that form the shock cells [65]. For stronger under- or 

over-expansion, the expansion waves spread in a Prandtl-Meyer fan. Their reflection 

from the sonic boundary is distributed and results in a curved shear layer. The 

reflected compression waves coalesce to form oblique shocks at the ends of the shock 

cells. At even stronger over- or under-expansion, local features such as Mach disks 

will form between the shock cells, but the pattern remains essentially periodic. 

For unsteady jets such as those oscillating in supersonic jet screech, the shock- 

cell structure is vigorously disturbed. The mechanism by which the motion of the 

shocks produce sound is not known in detail. However, the shock motions in screech 

themselves have been documented. 

Based on extensive stroboscopic spark schlieren and shadowgraph visualization, 

Westley and Woolley [77] have observed significant shock motion within a round 

choked jet. In Figure 1.6 we reproduce their depiction of downstream shock propaga- 
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Figure 1.6:  Disturbance and shock motions during oscillation cycle, Mode Bi (ax- 
isymmetric mode), from Westley and Woolley [77]. 

tion in a jet screeching in the axisymmetric mode, wherein the instability waves are 

toroidal. With the passage of the toroidal disturbances they observe the formation of 

shocks, which travel the length of shock cell but disappear as they approach the end 

of the shock cell; at times double shocks exist. This "staircase" shock motion was 

aiso observed by Panda [33]. Westley and Woolley also studied the shock oscillations 

in a screeching jet experiencing the helical oscillations. As the jet disturbances are no 

longer axisymmetric, the shocks undergo changes in orientation, as graphed in 1.7. 

The magnitude of these changes increase with downstream distance; this is consistent 

with the growth of jet instability waves in this direction. They also note in that the 

oblique shocks appear to strengthen just as the disturbances pass, and weaken at 
other times. 

Suda et al. [61] report visualizations from a rectangular jet which is undergoing 

anti-symmetric flapping oscillations about the long cross-sectional axis. The jet con- 

tains a single dominant screech source centered about the third shock cell, as is typical 

of rectangular jets of high aspect ratio. As shown Figure 1.8, the oblique shocks in 
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from Westley and Woolley [77]. 
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Figure 1.8: Motion of traveling shock in third shock cell of rectangular jet (from Suda 
et al. [61]). 
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the third shock cell appear to travel downstream with the shear layer vortex and coa- 

lesce into shocks at the end of the cell, during which the shock experiences significant 

changes in orientation. They propose that this motion results in the screech sound, 

but offer no direct evidence. 

Shock noise modeling 

Powell, having discovered screech and therefore shock-cell noise, also devised the first 

shock-cell noise model with his phased array of monopole sources [40]. However, this 

model offered no basis for predicting screech amplitude, beyond its relative directivity. 

Lighthill [22] set out to understand the shock-cell noise phenomenon from first prin- 

ciples by considering the shock-turbulence interaction as a model problem, wherein 

a linear analysis yields the acoustic field scattered from vorticity waves converting 

through a normal shock. Others [28, 51] have generalized the vorticity waves to free 

vortices to approximate large amplitude instability waves. This unbounded shock 

model has yet to offer practical results for shock-cell noise; the jet shear layer and 

the bounded shock-cells, which this approach ignores, may be critical to a successful 

model. 

Harper-Bourne and Fisher [8] were the first to establish that broadband shock-cell 

noise arises from the interaction between the random, fine scale turbulence in jet shear 

layers and the shock cell structure. They ftmner showed that the overall intensity 

is of this sound is independent of observer angle and is a function only of the shock 

cell strength. They developed a model for the peak frequency of this noise based on 

a phased array of equally spaced sources (based on that of Powell's), whereby peak 

frequency fp depends on observer angle 9 according to the following: 

f Uc 
U     s{l-Mccos9) (L7) 

As Tarn et al. [71] observe, setting 9 = 180° recovers Equation 1.4. They show that 

screech frequency is in fact the limiting case of broad band shock noise in the upstream 

direction. Like Powell's source model, Harper-Bourne and Fisher's [8] source model 
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does not consider the mechanism by which shock-cell noise is produced but instead 

only the sound field that results from a phased array of such sources. 

Howe and Ffowcs Williams [12] devised simple model for the imperfectly expanded, 

supersonic jet to obtain some basic insight into acoustic energy flux in the production 

of the shock-cell noise. The model utilizes the streamwise-invariant, vortex sheet ap- 

proximation to the round jet and the streamwise-periodic shock cell structure based 

on the linear description first developed by Prandtl [42] and later refined by Pack [32]. 

In their model, they construct acoustic source terms in the spirit of Lighthill's [21] 

acoustic analogy by considering the weak interactions between random, axisymmet- 

ric disturbances in the vortex sheet and the shock cell structure. They find that the 

dominant convection velocity of the large-scale eddies is "a principal factor determin- 

ing the total radiated sound power, essentially independently of the details of the 

interaction mechanism." Hence, within the regime of this model (small fluctuations) 

details of the shock-cell noise generation mechanism may not be important. 

Tarn [62] builds upon Howe and Ffowcs Williams' model by refining the description 

of the shock cell structure and jet disturbances. He devises a shock cell model com- 

posed of time-independent waveguide modes of the jet flow using the multiple scales 

expansion of Tarn et al. [70]. The turbulence structures are modeled by superimpos- 

ing jet instability wave modes, which are initiated by random white noise excitations 

based on the similarity arguments (see Tam and Chen [68]). The w«Jc interaction 

of these two components then give rise to the broadband sound field. Tarn's near- 

and far-field contour and directivity maps agree well with the experimental measure- 

ments of Norum and Seiner [30], predicting both the shift in peak frequency and the 

narrowing of the peak's spectral width as observer angle moves from downstream to 

upstream. 

Motivated by the supersonic jet screech problem, Kerschen and Cain [16] devel- 

oped a shock instability-wave interaction model for a single source. Their considera- 

tion of a single source arises from the observation that in jet screech, the shock-cell 

structure is short due to rapid mixing and therefore contains only a few dominant 

sources, which furthermore vary significantly in amplitude. Understanding the prop- 

erties of a single source, such as directivity, therefore becomes important.   Their 
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Figure 1.9: Schematic of the model problem, (r, 6) coordinate system defines acoustic 
field observer coordinates relative to approximate location of acoustic source. 

idealized flow consists of a vortex sheet, on which small disturbances are propagated, 

and an stationary, oblique Mach wave (and its reflection from the vortex sheet). As 

with the broadband shock-cell noise models above, the sound field resulting from the 

weak interaction of the vortex sheet disturbances and the Mach wave system is con- 

sidered. The Wiener-Hopf technique is used to accommodate the singularity at the 

interaction site. Kerschen and Cain predict that the radiation field of a single source 

peaks at 48° from the downstream direction, and decays rapidly in the upstream di- 

rection. They suggest that the apparent contradiction with the directivity typically 

observed in screech is corrected when multiple sources are superimposed in a phased 
array. 

1.3    Model Problem 

To study the mechanism by which screech is generated, we have devised a model 

problem that consists of an isolated shock reflection and a single shear layer (Fig- 

ure 1.9). We have reduced the shock-cell noise (and therefore, screech) source to its 
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fundamental elements. Its physical scope is similar to that considered in Kerschen 

and Cain [16]. However, within the context of this model, we admit shear layers 

of finite thickness and instability waves and shocks whose amplitude may be large. 

We have therefore retained sufficient generality to allow us to explore fully nonlinear 
interactions. 

In studying the screech source at this level we are omitting a number of phenomena 

which readily occur in screech. These are: 

1. Feedback—we wish to explore the relationship between instability amplitude 

and acoustic amplitude; feedback is eliminated to give us direct control over 
instability wave amplitude. 

2. Three-dimensional effects—the occurrence of screech in high aspect ratio jets 

demonstrates that the overall screech phenomenon, and therefore the screech 

generation mechanism, can be encapsulated in two dimensions; furthermore, 

the role of turbulence in screech is minor [13]. 

3. Full jet effects—these include cross-jet interactions such as antisymmetric os- 

cillation modes, disturbance propagation down the shock cell structure, and 

interference effects among multiple sources; these are extraneous to the basic 

screech generation mechanism. 

1.4    Overview of Thesis 

The overall objective of this study is to improve our understanding of the shock- 

cell noise generation mechanism, particularly at the high instability wave amplitudes 

typical of screech. We carry out direct numerical simulations to establish the noise 

generation behavior. We employ linearized Euler simulations to explore the depen- 

dence of the acoustic field on instability wave amplitude. Finally, we make use of 

geometric acoustics to verify the appropriate framework for understanding the sound 
generation process. 

The principal accomplishments and findings of this work are listed as follows: 



CHAPTER 1.   INTRODUCTION 21 

• The passage of instability wave vortices across an incident shock result in large 

fluctuations in the position and orientation of the shock. Coupled with these 

fluctuations is the generation of the sharp compression front of the acoustic 

wave, which occurs precisely as the shock travels upstream between the vortices 

in its oscillation cycle. The shock itself "leaks" through the shear layer at this 

point to become the sound wave. 

• The sound generated by the interaction exhibits significant upstream directivity, 

to the extent that the upstream traveling sound wave creates an oblique Mach 

wave in the supersonic stream. 

• The instability-wave shock interaction and sound emission behavior is essen- 

tially reproduced for weak compression waves, indicating that the nonlinearity 

of the shock is not required for the process to occur. The amplitude of the 

acoustic field is found to scale with the compression wave amplitude. 

• Slow, downstream-traveling waves are found to appear and persist in the super- 

sonic stream and serve as secondary sources of sound via essentially the same 

interaction mechanism. 

• Numerical solutions of the Euler equations, linearized about an unsteady base 

flow obtained fro™. DNS, are used to show that the sound generation process 

can be regarded as the scattering of incident standing wave into propagating 

waves by shear layer disturbances. This may represent the first instance in 

which an unsteady base flow is used with the linearized Euler equations to 

study supersonic jet noise. 

• The linearized Euler simulations are used to show that the sound generation 

process is governed by a thresholding phenomenon, whereby the acoustic am- 

plitude rises exponentially with instability wave amplitude until a saturation 

state is reached. There is also evidence of a third regime of dependence at low 

instability wave amplitude. 
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• The velocity field is shown to be the critical feature of instability waves which 

result in the sound generation. Replacing the the DNS base flow with an incom- 

pressible vortex mixing layer solution with thermodynamic variations omitted 

is shown to reproduce much of the sound generation behavior, including the 

thresholding phenomenon. 

• The sound generation process is reproduced with geometric acoustics by inte- 

grating ray paths through a vortex laden shear flow. This result shows that 

the high amplitude screech generation process is fundamentally driven by the 

unsteady refraction of the incident shock and that "leakage" is an appropriate 

characterization. 

This thesis is organized as follows. Chapters 2 and 3 cover the numerical simula- 

tions. In Chapter 2 we focus on the details of the numerical methods, from the basic 

scheme, boundary conditions, to special considerations (shock capturing and filtering) 

and postprocessing. In Chapter 3, we outline the details of the actual implementation 

of the simulations and present the results of the simulations. In Chapters 4 and 5, 

we show that the basic results found in the Navier-Stokes simulations can be repro- 

duced and expanded upon using specially linearized Euler equations. In Chapter 6 

we consider the efficacy of a model based on geometric acoustics. Chapter 7 consists 

of conclusions and recommendations for future work. 



Chapter 2 

Numerical Simulations: Method 

2.1    Introduction 

In this chapter we discuss the numerical methods used to solve the Navier-Stokes 

equations when applied to the model problem for a screech-type source. Studying 

the model problem with solutions to the Navier-Stokes equations permits us to in- 

vestigate the screech generation phenomenon with fewest a priori assumptions about 

the nature of the sound source. We refer these computations as "direct numerical 

simulations", or DNS, to indicate that on the interior of the solution domain, the 

Navier-Stokes equations are solved without modeling any of its terms Because the 

screech phenomenon is not inherently linked to turbulence but instead to the large 

scale instability waves of the shear layer, it is acceptable to carry out these simula- 

tions at Reynolds numbers substantially below those of experiments and actual jet 

engine exhaust flows. 

In the following sections, we begin by summarizing the numerical methods. We 

then focus on the equations of motion, and the time and space discretization schemes, 

including those for shock capturing. This is followed by a discussion of the bound- 

ary conditions methods, where we also discuss inflow forcing and shock prescription. 

Finally we describe the computational mesh distribution. 

23 
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2.2    Numerical Method 

In the screech-type source model problem, shear-layer instability waves and vortices 

interact with an isolated region of the shock-cell structure. The model allows inde- 

pendent control over the amplitude and frequency of shear-layer disturbances as well 

as the strength and orientation of the shock. To simulate the shock-vortex interaction 

and the resulting sound, it is necessary to use accurate space and time discretization 

schemes. 

The simulations are based on a numerical solution to the unsteady compressible 

Navier Stokes equations in conservative variables [24]. The scheme uses the com- 

pact, sixth-order Pade scheme.[20] for computing spatial derivatives. It also makes 

use of the ENO scheme [58, 59] to capture discontinuities when necessary. Time ad- 

vancement is performed using the third-order Runge-Kutta scheme [79]. Boundary 

treatment consists of Thompson-type non-reflecting boundary conditions [36], and is 

augmented by damping-sponges [14] and buffer-zones [6]. 

2.2.1    Equations of Motion 

The simulations are based on numerical solutions to the unsteady compressible Navier- 

Stokes equations. In conservation form, the Navier-Stokes Equations are 

!>X) + g|(pXu;+p*<y = gi (2.2) 

^ + ^P.-+P>-] = -^ + g|(,^) (2.3) 

where the superscript ( )* indicates dimensional quantities. Note that the Einstein 

convention of summing over repeated indices is observed for brevity. The energy 

equation is expressed in terms of the total energy ££, which is comprised of the 

internal and kinetic energy per unit volume: 



CHAPTER 2.   NUMERICAL SIMULATIONS: METHOD 25 

u*u* 
Et = P*(e* + ^-) (2.4) 

The constitutive relations close the system of equations.  We assume Stokes hy- 

pothesis holds so that the viscous stress is given by 

,/öu?     du*     2dul\ 

The Fourier law for heat conduction gives q* as 

dT* 
*=~k0^ (2.6) 

where k* is the thermal conductivity. The coefficient of viscosity and the thermal 

conductivity are not assumed to be constant (see below). The fluid is taken to be an 
ideal gas so that 

P*=p'R*T* (2.7) 

R* is the specific gas constant. 

The viscosity is assumed to vary only with temperature according to a power law, 

f « Cnn (2.8) 

where n = 0.67 (see White [78]).   The thermal conductivity k* is related to the 

coefficient of viscosity //* through the Prandtl number 

Pr = lf (2-9) 

which is assumed to be constant. 

The specific internal energy is related to the temperature through the specific heat 
at constant volume c*, 

e* = <T*- (2.io) 
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similarly the specific enthalpy is related to temperature through the specific heat at 

constant pressure 

h* = c*pT*. (2.11) 

The ratio of specific heats 7 = c*Jc* is assumed to be 1.4. 

The solutions to the equations of motion are carried out in nondimensional form. 

The nondimensionalizations of the flow quantities are based on a reference length 

(LQ), velocity (UQ), density (p£), and viscosity (p^). There is also a reference Mach 

number Mo = UQ/C£. 

x* t* u* p* a* 

LQ L*Q/u*0 Uo Po Ho 

p* p* T* 1        T* e* 
p'ovtf    7A^p5'       utf/c;    (7-i)M?r0*'&   u? 

where p*0 = pgitfVfrA^) and T0* = p^/p*0R* = <7[(7 - l)c;M0
2]. Substituting these 

definitions into the Navier-Stokes equations allows one to obtain the nondimensional 

set of equations. 

|(^) = -A(Wi+Ä) + ö| (2l5) 

w -iP'^^-^l^ (216) 

If one defines Reynolds number 

Re = ^ß (2.17) 

the constitutive relations are similarly nondimensionalized: 

_  p /dui     duj     2duk 
,;     ReKdxj     dxi     3dxk 

p    dT 
qi~    RePrdxi' 

), (2.18) 

(2.19) 
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p = -—-pT. (2.20) 
7 

2.2.2    Spatial Differencing Scheme 

The spatial discretization implemented in the simulations is based on the compact 

finite difference schemes studied by Lele [20]. These schemes are modified Pade 

methods, i.e., they use an implicit formulation to achieve high accuracy on a relatively 

small stencil. The schemes have also been shown to have low dispersion error, an 

important feature for aeroacoustic simulations. 

The first derivative of f(s) is approximated at Sj by 

fi-l + °l/i + fi+l = <*2 T  + o3  (2.21) 

where As, the grid spacing, is assumed to be uniform. To accommodate non-uniform 

grids, a mapping function h(s) is defined; see below. The coefficients are defined 

1 + 2ax 4 — di , 

where aY is taken to be 3. This stencil is applied to the interior of the domain, from 

i = 4toi = N — 3, where JV is the number of grid points in the s-direction. Near the 

boundary, the following stencils are used: 

2/{ + 4/-=-
5/l+

A
4/2 + /3;   i = l (2.23) 

f[ +4/^ + ^ = 3^^;   t = 2 (2.24) 

/2 + äi^ + /I = ä2^-^+ä3^4   i = 3 (2.25) 
As As 

where äi, 02, and ö3 are defined: 

,_l+2oi     .       l + 2äi     _       4-äi 
°' = 164Ö^; °2 = ^; ^IT (2'26) 
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Analogous stencils axe obtained for the points i = N — 2, N — 1, and N. The 

differencing scheme is sixth-order accurate for the interior points (4. < i < N — 3), 

fourth-order accurate at i = 2,3, N — 2, N — 1, and third-order accurate at i = 1, N. 

When the computational grid is non-uniform, it is possible to retain the accuracy 

of differencing provided the grid is defined in terms of an analytic mapping function h 

such that h(s) = dx/ds. The approximation to the first derivative on the nonuniform 

grid is then 
df     l df 

(2.27) 
dx     h(s) ds 

Second derivatives are also approximated in an implicit fashion: 

ill       ,   .    til   ,    ///           L  /i+l ~ 2/i + /»-I    .   .    /t-t-2 - 2/j + /j-2 . . 
fi-l + bUi   + /i+l = b2 ^2  + b* A^2  (2-28) 

where 

42 = 4^i;   63=^ (2.29) 

61 is set to 11/2 to achieve 6th order accuracy. The boundary stencils are 

f" + 11f"        13/l~27/2 + 15/3-/4. .         . 
/l + u/2  =  ^2 ;    % = 1 ^2-30^ 

f" 1 inf'x /" — 12(/3 -2/2 + /1)      .     _ /0,n /1 + 10/2 + /3 = ^5 ;   t = 2 (2.31) 

To obtain the second derivative on a non-uniform mesh, one simply differentiates 

Equation 2.27 with respect to x. 

^!Z = l^/_^5/ aw 
dx2      h2ds2     h2dx {      ' 

For both first and second order derivatives, a system of linear equations is obtained. 

Matrix inversion is carried out with LUJ factorization using the Thomas algorithm 

for tri-diagonal matrices. 
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2.2.3    Temporal Differencing Scheme 

The solution is advanced in time in an explicit fashion using the compact storage, 

third-order accurate Runge Kutta method of Wray [79]. The scheme, when applied 

to the model equation dy/dt = f(y, t), has the following predictor-corrector form: 

J/n+1/3 = Vn + —Atf(Vm *n) (2.33) 

1 5 
S/n+2/3 = Vn + ^Atf(yn, tn) + ^Atf(yn+1/3, tn+1/3) (2.34) 

1 3 
Vn+l = Vn + jAtf(yn, tn) + -At/(j/n+2/3, in+2/3) (2.35) 

where 
8 2 

in+i/3 = t + — At;   tn+V3 = tn +-At. (2.36) 

Flows considered herein are dominated by inviscid, rather than viscous, behavior. 

Mahesh et al. [24] documents the convective and viscous stability criteria for the 

RK3-Pade scheme. Based on these criteria, we show here that the time step is 

constrained more by a convective numerical instability than by a viscous numerical 

instability. The stability limits are deduced from model convection and diffusion 

equations, which approximate the convective and viscous terms of the Navier-Stokes 

equations, respectively. The convective stability limit, expressed in terms of CFL 

number, is 

CFL 
|ui| +c     |u2| +c 

A ,      . A« < 0.871. (2.37) 
L    Axi Ax2    \max ' 

In practice the CFL number is limited to around 0.5 for accuracy reasons. Time step 

At is often held fixed to accommodate post-processing methods which require equal 

time-spacing. The viscous stability limit is given by 

At (   1 1   \ 
+ X3 < 0-365. (2.38) Re \Axl     Axl 'max 

For a CFL = 0.5, Re = 1000, Axi = 1/10, and (Ax2)min = 1/15, which are typ- 

ical values for simulations we have run, the left hand side of Equation 2.38 evaluates 

to approximately to 3.6 x 10"3, i.e., well within the viscous stability limit. 
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2.2.4    Shock Capturing 

Resolving shocks with the spatial differencing scheme given above would require ex- 

tremely dense grid spacing in regions where shocks are expected to arise. When the 

shocks move, the region of high grid density must be expanded to cover a larger re- 

gion. For an explicit time advancement scheme, the small grid spacing imposes a high 

cost not only through increased grid sizes but also through a comparable reduction in 

the time step necessary to maintain numerical stability. It is therefore important to 

employ a shock-capturing scheme to accommodate discontinuities of interest in the 

numerical solution. In this section we describe the implementation of the essentially 

non-oscillatory (ENO) shock capturing scheme. The ENO schemes were first devel- 

oped by Harten and Osher [9]. The scheme described here is based on the improved 

versions of Shu and Osher   [58, 59]. 

The ENO shock capturing method uses the traditional Lax-Friedrichs splitting of 

the inviscid fluxes, 

f(q) = f+(q) + f-(q) (2.39) 

where 

f± = (f±aq)/2 (2.40) 

and a is the maximum value of |u| + c in the x direction within the ENO zone (along 

rixed y). We consider each direction in a quasi-one-dimensional fashion. In the 

Navier-Stokes equations the inviscid fluxes appear in the form df/dx. The derivative 

of these fluxes are then 

df ± 

dx /J+1/2A/J~1/2 (2-41) 

The numerical fluxes are defined using an expression which is general for arbitrary 

order r. If index i is the leftmost point in the stencil, then the numerical fluxes are 

/j+1/2   : 

/j-1/2   : 

]C cENo(i - j, m)/*[»', rn) (2.42) 
m=0 
-J: 
/(i-l)-l/2 (2.43) 
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where cENO(,,m) is the coefficient matrix for the stencil of general order, 

1 3+m    s+m 

cENo(s,m) = --~-Y:    II   (-P+1) (2.44) 
V ''1=3   P=S,p^l 

and /±[j, k] are differences of p: 

' ^ 

/[7,*] = / (UJ), k = 0 

{ Hi + hk-lj-f^k-l],   k = l,...,r 
(2.45) 

An adaptive procedure is used to determine i (the leftmost point of the stencil); the 

purpose of the procedure is to strongly inhibit the differencing across the discontinuity: 

t = • - 1  if 2|/±[i, k}\ > \f±[i - l, *]|;   k=l,...,r. (2.46) 

The factor of 2 left of the inequality is a scaling which reduces the likelihood of 

instability. The same scheme is applied for the Xl and x2 directions. 

The "ENO zone" is a rectangular region in which the shock is expected. The ENO 

scheme is used to compute inviscid fluxes within this zone; the Pade scheme is used 

elsewhere. The extent of this zone for which ENO scheme is applied is indicated in 

Figure 2.1. The left boundary of the zone was designated to be 28 to the left of the 

entry point of the shock on the lower boundary and 65 to the right of the mean shock 

reflection site (e.g., XaTC/8 = 20 for Case A as reported in Chapter 3). The lower 

boundary of the ENO zone coincides with the lower boundary of the computational 

domain, whereas the upper boundary was located 5«J above VsTC. 5 is the initial 

vorticity thickness of the shear layer. See Section 2.5 for implementation of oblique 

shock boundary condition. Note that the ENO scheme is used only for a small subset 
of simulations as indicated in Table 3.4. 

2.2.5    Numerical Filtering 

The appearance of shocks in an unsteady, supersonic flow is often unavoidable. When 

shock capturing as outlined above is used in a simulation, it is directed toward specific 
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Figure 2.1: Approximate typical placement of ENO zone relative to shock position. 
ENO zone is located within the dashed line. 

zones within which the shocks are known to be strong. Due to its computational 

expense, shock capturing cannot be efficiently applied throughout the domain. A 

growing unsteady shear layer at sufficiently high convective Mach number gives rise 

to traveling shocks (e.g., eddy shocklets), which, if left untreated, would lead to an 

unstable solution. In recognition of these effects, we apply a filtering scheme which 

eliminates the high wave number (primarily 0 delta wave) numerical errors from the 
solution. 

We apply the sixth order Pade filter, as documented in Lele [20].   Setting ß in 

[20] to zero, the general form of the function is 

a/i-i + fi + afi+1 = afi + -(/i+3 + /<_3) + |(/i+2 + /<_2) + b-{fi+l + f^)   (2.47) 

where f{ is the filtered value at x,. Formulated in terms of a low pass transfer function, 
we have 

a + bcosjw) + ccos(2tt;) + dcos(3w) 
1 + 2a cos (tu) 

T(w) = (2.48) 



CHAPTER 2.  NUMERICAL SIMULATIONS: METHOD 33 

where w = kAx is the wave number normalized to the grid element size and 

a= -(5 + 6a + 16d) (2.49) 

6 =-(1 +2a-2d) (2.50) 

c=--(l-2a + 16d) (2.51) 
0 

If we take d = 0, we obtain a reasonable low-pass filter for a < 0.5. Rearranging 

the coefficients, we obtain: 

fi-i + ~fi + fi+i = ^fi + ^(/i+2 + fi-2) + ^(/i+i 4- fi-i) (2.52) 

or 

fi-i + ac'U + fi+l = a'fi + b'(fi+l + /U) + c'(fi+2 + fi_2) (2.53) 

where a' = \/a and 

a' = ^ = ^(5a' + 6) (2.54) 

Boundary treatment for non-periodic boundary conditions are as follows (explicit 

fourth order accuracy with exact filtering of w = 7r): 

h = ig/i + ^(4/2 - 6/3 + 4/4 - /5) (2.57) 

/2=4/2 + jg(/i+6/3-4/4 + /5) (2.58) 

Similarly, for the opposite boundary: 

15 1 
IN = —JN + Yg(4/w-i - 6/tf-a + 4/^_3 - fN_A) (2.59) 
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3 1 
IN-I = 4/tf-i + —(fff + 6./W-2 - 4/JV-3 + IN-A) (2.60) 

In Figure 2.2 we show the transfer function for a' = 2.222. The second graph in 

the figure gives an indication of the wave number range over which the modification 

by the transfer function exceeds 1% In practice the filter is applied only every tenth 

time-step. Therefore the filtering should have little impact on features for which 

w = kAx < 7r/2. In Appendix B we demonstrate that this choice of filter parameter 

has little impact on the accuracy of the results. 

2.3    Boundary Conditions 

The boundary conditions are considered in the context of their application, namely, 

an aero-acoustic flow simulation. The flow consists of a supersonic shear layer of finite 

thickness, bounded on the top by an essentially quiescent region (see Figure 1.9). An 

oblique shock or compression wave, which impinges on the shear layer, is introduced 

from the lower boundary of the domain. Instability waves are generated by forcing the 

inflow at the left of the domain. The instability waves grow and evolve into vortices, 

which then must exit the domain through the outflow boundary at the right. The 

interaction between the unsteady shear layer and the oblique shock results in acoustic 

waves which radiate in most directions, including back into the supersonic stream. 

To simulate this flow it is crucial that highly accurate numerical boundary con- 

ditions are employed. These boundary conditions must allow the following: (1) a 

controlled inflow perturbation without spurious numerical feedback (i.e., avoid spu- 

rious numerical receptivity), (2) oblique shocks to be prescribed and anchored at the 

computational boundary, (3) large-scale vortical disturbances to exit from the out- 

flow boundary without creating significant reflection, and (4) acoustic disturbances 

to propagate out of the computational boundary without significant reflection. 

Three types of boundary conditions are used: 1) Thompson-type nonreflecting 

boundary conditions [74], 2) the damping sponge [14], and the buffer-zone [6]. The 

boundary conditions are either used alone or in combination. The Thompson bound- 

ary conditions are applied at the boundary directly, whereas the other two methods 
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< 
■a 

^   0.4 • 

Figure 2.2: Top: Transfer function T(kAx) for Pade filter. Bottom: Relative change 
due to filter function. Filter parameter a' = 2.222. Plotted against grid wave number 
A; Ax. 
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Thompson NRBC 

Damping Sponge 
and 

Buffer-zone 

366 

Figure 2.3: Boundary zones for the numerical simulations. 

are applied over a region adjacent to the boundary, which we call the "boundary 

zone". As shown in Figure 2.3, the Thompson boundary condition is applied only to 

the upper boundary. The damping sponge is applied at all four boundaries, and the 
buffer-zone is applied only at the outflow. 

The Thompson-type boundary conditions are based on a one-dimensional char- 

acteristic analysis, where incoming characteristics are set to zero so as to eliminate 

reflections. The damping sponge method [14] involves the addition of a source term 

to the equations of motion; in the boundary zone, this source term drives the solution 

toward a prescribed solution. The distribution of the source strength is varied from 

zero to a maximum value across the boundary zone, thereby damping out unwanted 

disturbances as they exit the computational domain. The buffer zone [6] changes the 

convective terms of the Navier-Stokes equations such that characteristics associated 

with traveling disturbances become entirely outward-going at the boundary. At in- 

flows, this permits one to prescribe all quantities, whereas at outflows, one need not 
prescribe any. 

The rationale for using the various boundary conditions in combination is several 

fold.   The first reason is to satisfy well-posedness: even the Thompson BC should 
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be used with the damping sponge when the flow crossing the boundary is subsonic. 

However, in the case of the buffer-zone, the Thompson boundary conditions are no 

longer necessary since the characteristics have been modified to be entirely outgoing 

or incoming; on the other hand, a damping sponge remains necessary for the purpose 

of damping a persistent steady-state error. 

2.3.1    Computational Methodology 

Thompson-type non-reflecting 

The Thompson boundary conditions fall in the class of characteristic-based boundary 

conditions for hyperbolic systems. These boundary conditions make use of informa- 

tion transported along characteristics to predict the boundary values in a numerical 

solution. These methods typically invoke the assumption that disturbances propagate 

only normal to the boundary. The Thompson boundary condition modifies boundary 

terms associated with inviscid transport in Navier Stokes equations. These transport 

mechanisms consist of acoustic wave propagation and the advection of vorticity and 
entropy. 

Consider the two-dimensional Navier-Stokes equation expressed in conservation 
form. 

<9Q     dFj,     dF2 

dt+~&r1 
+ e£ "vlscous terms (2-61) 

For a boundary normal to the ^-direction, i = 1 or 2, only the terms contained in 

the inviscid flux expression dF./dx, are approximated using characteristic variables. 

The amplitude variation of characteristic waves for the xx direction are [74] 

Li = (ui-c)fö~4ä (2-62> 
12   =   *X{?*k-&) (263) 
r du2 
L*   =   ^ex~x (2.64) 
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L> - ("1 + C)S+^) <2-65) 

where c is the local speed of sound. The coefficients (iti - c), m, and (u\ 4- c) are 

the characteristic velocities. Based on these velocities, the variables Lm associated 

with outgoing characteristics are evaluated based on interior points, whereas those 

associated with incoming characteristics are zeroed so as to eliminate the reflection of 

the inviscid normal disturbances. These characteristic variables are then rearranged 

to obtain the terms that appear in the flux expression dFi/dxi: 

di 
djpui) = \_(T   t Lt + Li 

dxi        c2 
i(i2 + £i±M (,66) 

, du\     Li — Li , 

* = u'wr^~ (2-68) 

d4   =   ui-^— = L3 (2.69) 

While this boundary condition scheme is well suited for planar acoustic distur- 

bances traveling in the x\ direction, acoustic waves traveling obliquely to the xi axis 

and features corresponding to large disturbances in vorticity, such as disturbed shear 

layers, result in large reflections. To address these, the following ac1 oitional boundary 

treatments have been implemented. 

Damping Sponge 

Consider a system of equations of the form 

dQ 
dt 

= L(Q) (2.70) 

where Q = Q(x, t) and L is a general nonlinear operator. Then we can modify these 

equations by adding a source term to the right hand side which provides a negative 

feedback: 
dQ 
-^ = L(Q)-a(x)(Q-Qref) (2.71) 
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Damping 
Sponge     ^i) 

Buffer 
Zone U(Xl) 

C/m0I{l+tanh[/r(i(,-x1)]}/2 

Figure 2.4: Schematic of boundary zone shape functions for damping sponge and 
buffer-zone. 

where the prescribed reference solution, Qre/ = Qre/(x,£), may be unsteady. The 

sponge coefficient, a(x), is non-negative everywhere. The boundary zone is defined 

for regions in which a > 0. Following Mahesh et al. [24] the sponge coefficient is given 

a cubic distribution, 

a(x) = > H—la 

0 

if xa < xi < Xb 

otherwise 
(2.72) 

where a^x > 0 is the maximum sponge strength, at the computational boundary, 

and xa and xb demark the inner and outer edges of the boundary zone, respectively, 

and xi is the coordinate perpendicular to the boundary (see Figure 2.4). In practice, 

individual sponge functions are defined for each boundary; in the vicinity of corners, 
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the boundary zones overlap, and a combined sponge function is defined. For instance, 

in a two-dimensional domain, such a sponge function may have the form 

<T(XU X2) = ffi(zi) + <72(x2) (2.73) 

The reference solution is prescribed by the implementer, usually using information 

and assumptions known before carrying out the computation. In many circumstances, 

a good prescribed solution is not known outright. For instance, if the damping sponge 

solution were to be used to absorb outgoing shear layer vortices, it would be difficult 

to know the unsteady solution at the boundary a priori. The usual alternative is to 

provide a mean flow reference solution which sustains the overall mean structure of 

the flow, but does not accommodate the unsteady feature, other than to damp them. 

There are instances where it is desired that the reference solution be imposed in an 

unsteady fashion. In the present application, such a reference solution is imposed in 

the inflow sponge with the intent that the instability waves prescribed at the inflow 

are not damped or otherwise modified as they pass through the sponge. The inflow 

forcing is described in more detail in Section 2.4. 

Buffer Zone 

The buffer zone boundary treatment, like the damping sponge, is comprised of a 

ziiodification to the equations of motion in the vicinity of the boundary. Instead of 

damping outgoing disturbances, however, the buffer zone method modifies the char- 

acteristics variables associated with traveling disturbances such that they resemble 

characteristics one would encounter in supersonic flow. In so doing, the characteristic 

variables may either be completely specified (as at a supersonic inflow) or completely 

unspecified (as at a supersonic outflow). 

Here we visit the basics of the formulation; a more complete description is available 

in Freund [6]. Generically speaking, the Navier-Stokes equations can be expressed in 

conservative form as: 

-or + -n— = S (viscous terms) (2.74) 
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The characteristics in the streamwise direction (the xi) direction are modified by the 
addition of a "convective" term 

dQ     dFi <9Q 
!k+~dx~+ pU^Xl>~dx~ = S (viscous terms) (2.75) 

Similar to the damping sponge coefficient <r(xi), the coefficient U(xx) is prescribed 

according to a distribution in the boundary-normal direction. A characteristic anal- 

ysis will show that the characteristics (in the Zi-direction) will propagate at speeds 

MI + U + c, ui + U - c, and ux + U (two characteristics). Therefore, to ensure that 

all characteristics are either incoming at the inflow or outgoing at the outflow, it is 

necessary to set at the boundary such that m + U - c> c for a mean flow to the right. 

There are some issues with regard to how the function U{xx) is distributed; in the 

present study we follow Freund [6] and make use of a hyperbolic tangent distribution 

which is centered at the outflow boundary, and decaying toward the interior: 

^(ar1) = ^{l+tanh[/r(a;1-x6)]} (2.76) 

where xb is, again, the outflow boundary coordinate (see Figure 2.4). fr is a parameter 

which is chosen such that U{xa) = ipU^, 0 < V < 1, where xa is the boundary zone 

interior coordinate. Therefore, as implemented, the buffer zone term acts on the 

entire domain. For xp < 1, though, the influence of the buffer zone terms for xi < xa 

are minimal. Values for xa, xb, and if; are given in or can be deduced from Table 3.2. 

In practice, according to Freund, it is also necessary to combine the use of the 

damping sponge with the buffer zone. The sponge damps steady-state error which 

persist in the buffer zone region. (The steady-state error is thought to be caused by 

disturbances traveling according to characteristics of zero velocity somewhere within 
the sponge.) 

Validation of outflow boundary conditions 

The outflow boundary condition consists of the buffer zone and the damping sponge. 

To determine satisfactory boundary condition coefficient settings, we carried out a 
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Figure 2.5: Schematic of exit boundary treatment tests with free vortex in uniform 
flow. 

series of test computations in which we placed a free vortex in a uniform flow (Fig- 

ure 2.5). The Mach number of the flow M^ = 0.75 approximates the convection 

Mach number of instability waves in a shear layer of Mi = 1.5 (the Mach number 

in the simulations is Mi = 1.2, chosen after these tests were carried out). The swirl 

velocity of the vortex is 0.8uoo, and was chosen to represent a saturated shear-layer 

vortex computed in a simulation. The diameter Do = 50. 

The reflection coefficient is denned as 

11 = \P» ■'mm I max 

Ap, vortex 
(2.77) 

where pmin and Pmax are the minimum and maximum pressure observed in the interior 

domain (excluding the exit zones) at a given time, and Apvortex is the pressure deficit 

associated with the vortex, \pmax —Pmin\max is then the maximum pressure difference 

after the vortex has completely departed the interior domain. 

In Figure 2.6 we show the time trace of instantaneous \pmax — Pmin\/Apvortex for 

a number of boundary conditions, including: 

1. the Thompson boundary condition alone, 

2. the damping sponge with the Thompson boundary condition, 

3. the buffer zone alone, and 

4. the buffer zone with the damping sponge. 
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Figure 2.6: Instantaneous measure of maximum pressure difference in interior domain 
compared to original vortex pressure deficit in free vortex tests of four boundary 
conditions. Reflection coefficients for each case are indicated. 

The specifics of the exit zone parameters for these configurations are as follows. 

The length of the exit zone is 365 except in configuration 1. For the cases which 

employ the damping sponge (2 and 3), a-ma* = 0.15. This value was arrived upon in 

the optimization survey depicted in Figure 2.7. The value of the buffer zone function 

at the domain exit is UmaX/U\ = 1.2, where U\ is the high speed stream velocity in 

the simulations, ip = 10-3. The grid spacing is uniform in x\ at Ax/<5 = 0.2. 

As determined by the plots in Figure 2.6, there is marked reduction in the reflec- 

tion coefficient due to a free vortex when one considers either the buffer zone or the 

optimized damping sponge, compared to the Thompson condition alone. The perfor- 

mance of the buffer zone alone is only marginally better than the damping sponge 

alone. The use of the buffer zone eliminates the need for Thompson boundary con- 

ditions out the boundary zone outflow. The addition of the damping sponge to the 

buffer zone was found to result in only a modest further improvement in reflection 

coefficient within the time sample of this test. However, as can be seen in Figure 2.6 
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n 10-3 

10-* 

Figure 2.7: Damping sponge coefficient a optimization at fixed sponge length for free 
vortex boundary condition test problem. 

the buffer zone reflection error is slow to disperse and may be cumulative as addi- 

tional vortices pass into the boundary zone. The cases with combined buffer zone 

and damping sponge indicate a more rapid decay in the reflection. 

2.4    Inflow Forcing 

The instability wave disturbances are introduced at the inflow boundary. The dis- 

turbances are forced harmonically according to eigenfunctions obtained from a linear 

stability analysis. For the inflow disturbances to remain undamped as they pass 

through the inflow damping sponge, we must define a reference solution based on a 

prediction of the convection and growth of the instability waves over the width of 

the sponge. The linear stability theory provides an adequate prediction if we assume 

that, within the sponge, the amplitude of these waves remains within the limits of 
the linearized theory. 

We decompose the reference solution into a steady component, the mean shear 

layer, and an unsteady component, the predicted instability wave. 

Qre/ = Qre/(x) + Q:e/(x,i) (2.78) 

The steady component Qre/ is described in the following section (2.4.1), whereas 

the details of the unsteady component are outlined in the subsequent section (2.4.2). 

According to the stability theory, the description of the instability wave in space and 
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time can be decomposed into a product of terms corresponding to the shear-layer- 

normal variation (the eigenfunction), the streamwise growth, and the streamwise 
convection: 

Qre/ = Q'ref(x2)e-
aiX^a^-^ (2.79) 

-on, Qv, and 10 are respectively instability wave growth rate, wave number, and 
frequency. 

2.4.1 Inflow profile and initial condition 

The mean inflow profile is based on a similarity solution to the compressible boundary 

layer equations. The procedure for obtaining this profile is documented in detail in 

Lu and Lele [23]. It is based on the Howarth transformation (see Schlichting [53]) of 

similarity solutions to the incompressible boundary layer equations and is generalized 

by Lu and Lele [23] to accommodate skewed shear layers; here the skew angle is 

set to zero. A system of ordinary differential equations are solved numerically, with 

a far-field temperature ratio of unity. Figure 2.8 depicts the velocity, density, and 

temperature profiles of the inflow for M = 1.2. 

2.4.2 Stability Analysis 

The eigenfunctions for the inflow forcing are obtained from a linear stability analysis, 

with the inflow profile obtained above as the base flow (the parallel flow assumption 

is invoked for the stability analysis). Only the inviscid linearized disturbance equa- 

tions are considered, since the instability mechanism of the shear layer is inviscid. 

In the spatial stability analysis (as carried out as in Lu and Lele, again with the 

skew angle set to zero), the normal mode assumption is made for disturbances in the 

streamwise direction, yielding a system of ordinary differential equations in the trans- 

verse coordinate. The dispersion relation which arises from the numerical solution of 

these equations gives a relationship between disturbance stream-wise growth rate and 

instability wave-number; and a relationship between instability wave frequency and 

instability wave number.  Based on the dispersion relation, a specific frequency (or 
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Figure 2.8: Mean inflow profile for Mach number M = 1.2, Re = 1000. Pressure is 
uniform; density is obtained through ideal gas law. 
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Figure 2.9: Dispersion relation for stability analysis based on shear layer given in 
Figure 2.8. Simulations are carried out at the most unstable frequency and at its 
sub-harmonic. — instability wave number ov, growth rate (-a*). 

f/fo U) ar -oti A, Shear Layer 
1.0 
0.5 

0.328690 
0.164345 

0.616465 
0.268053 

0.212204 
0.150150 

10.1923 
23.4401 

SLO 
SLl, SL2, SL3 

Table 2.1: Eigenvalues used in instability wave forcing at inflow; shear layer cases are 
SLn are given ii. Table 3.3. 

"eigenvalue") is chosen and substituted back into the system of equations to obtain 

eigenfunctions. These eigenfunctions describe the dependence of the relative distur- 

bance magnitude and phase on the transverse coordinate. Unique eigenfunctions are 

obtained in this manner for streamwise and transverse velocity fluctuations and the 

density and temperature fluctuations. 

Figure 2.9 illustrates the dependence of frequency and disturbance streamwise 

growth rate as functions of streamwise wave-number for the mean flow profile shown 

above. The forcing frequencies chosen for the simulations described below are indi- 

cated. Figure 2.10 shows the eigenfunctions for velocity and temperature fluctuations. 
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Figure 2.10: Real and imaginary parts of instability wave eigenfunction distribu- 
tions corresponding to eigenvalue v/(U/6) = 0.164345 (subharmonic of most unsta- 
ble mode).  — p'/u'^, u'K^, - - - v'/u'^, - - - T'/u'^. u'^ is the 
amplitude of the streamwise velocity fluctuation and serves as the scaling parameter 
for the instability wave mode. Note that the nondimensionalization for temperature 
given here is V = T'*/T^. 



CHAPTER 2.   NUMERICAL SIMULATIONS: METHOD 49 

il. 

-Outflow- 

\avier Stokes Region 

Inflow- 

~*rtflecitR~ 

Figure 2.11: Schematic of how oblique shock is introduced by lower sponge into 
computational domain, and its effect on the mean flow. 

2.5    Incident Wave 

Depending on the case, either an oblique shock or compression wave is imposed on 

the lower boundary. Figure 2.11 depicts schematically how the shock is imposed 

upon the flow through the lower boundary sponge, and how it reflects from the shear 

layer in the form of an expansion wave fan. The flow pass;ng through this wave 

system turns toward the shear layer successively twice, thereby deflecting the shear 

layer away from the supersonic stream. The sponge must also accommodate and 

absorb the expansion waves. The sponge serves the purpose of holding the shock and 

absorbing unsteady disturbances which travel down the expansion waves during the 

shock vortex interaction. 

Whereas the shock is by definition a thin feature through which entropy increases 

as flow variables make a significant jump, the compression wave consists of a similar 

transition, except that the wave profile is widened and the jump is reduced to the 

extent that the wave remains essentially isentropic. The motivation for considering 

these weaker, wider compression waves consists of the following: 1) the elimination of 

the thin shock permits computations without discontinuity-capturing schemes, which 
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axe computationally expensive; 2) the weaker and wider compression wave is found 

to result in a radiated acoustic wave profile whose features can be resolved on a 

coarser mesh; and 3) the weaker compression wave deflects at a smaller angle, thereby 

increasing the effectiveness of the subtraction technique for obtaining the acoustic 

field; 4) the weaker waves are more amenable to small-disturbance modeling. 

As it was necessary to verify that the compression waves produce interactions 

which retain the gross behavior of the shock instability wave interactions, we carry 

out both simulations with shocks and with compression waves. 

2.5.1    Shock and Prandtl-Meyer Expansion 

In the case of the shock, the jump in the flow variables is a significant fraction of the 

mean, and the width of the shock is thin enough to require shock-capturing. The jump 

conditions are the Rankine-Hugoniot conditions for a normal shock, with velocities 

modified appropriately to accommodate the obliqueness. At the lower boundary 

and in the sponge, the width 6shock of the imposed profile is estimated based on 

the expression for the thickness of a weak laminar shock (see the Taylor analysis in 
Mahesh et. al [24]: 

ci<5shock        6.89 , 

where Mx is the upstream normal Mach number, ci the upstream speed of soun^, 

and vi the upstream kinematic viscosity. The profile itself is imposed in the shape of 

a hyperbolic tangent. 

The imposed boundary and sponge profiles for the reflected expansion are based on 

the idealized Prandtl-Meyer expansion emanating from the point at which the shock 

would intersect the centerline of the shear layer (discounting shear-layer thickness 

effects). Providing a precise description of the reflection is not critical given the 

unsteady nature of the disturbances which interact with the compression wave; most 

important is that the overall mean flow changes be accommodated. Figure 2.12 

illustrates the details of expansion fan system approximation. 
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Figure 2.12: Detail of P-M expansion, which arises from the reflection of the shock 
off the shear layer. 

2.5.2    Compression Wave Prescription 

The compression waves, though imposed with strengths somewhat weaker than in the 

shock cases investigated, are still of magnitude where convergence of Mach lines must 

be accommodated, particularly to avoid the formation of a thin shock. The width of 

the oblique compression wave, denoted w, corresponds to the theoretical separation 

of the leading and trailing Mach waves at the center-line of the mean shear layer 

(discounting finite shear layer width effects; see Figure 2.13). This separation is 

denoted w . The details of the geometry are given in Appendix A. 

2.6    Computational Mesh 

In order to reduce overall computational costs while retaining numerical accuracy, 

it is necessary to reduce the density of grid points away from the shear layer by 

using a nonuniform mesh. As described earlier, the numerical method relies on an 

analytic mapping function h(s) = dx/ds to compute first and second derivatives 

on a generally nonuniform mesh. In the direction perpendicular to the shear layer, 

the analytic function is defined for the present simulations in terms of three distinct 
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Figure 2.13:  Schematic of compression wave system, with width w defined as indi- 
cated. Further detail of geometry is given in Appendix A, Figure A.l. 
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zones: the shock region, the shear layer, and the outer flow. The grid is uniform in 

the stream-wise direction. 

As shown in the left side of Figure 2.14, we define the function r(s) which defines a 

mapping from the computational domain to the unsealed physical domain (mapping 

from [0,1] to [0,1]). Two control points, sa and sb, demarcate the borders of the three 

regions in the computational domain, and the corresponding control points ra and rb 

indicate where the borders will lie in the (unsealed) physical domain. Through these 

points, the slopes of the line segments (mi, m2, and m3, respectively) are defined: 

ra rb — ra mi — —,   m2 = ——— 
S0 Sj>      sa 

m3 = 
1 - Sb 

(2.81) 

these slopes are proportional to the grid element size Ay for each region. To con- 

struct the function with smooth transitions between the line segments, we define its 

derivative as follows: 

r'(s) = m1 + 'i(m1-m2) l+tanh(—-)  + -(m2-m3) l+tanh(^-^)    (2.82) 

where wa and Wb control the transition width between the regions. The unsealed grid 

mapping function is then obtained by integrating Eq. 2.82 from s = 0 to s: 

r(s) = -(mi + m3)   +(rn2 - mi)i/;aln jcoshf ^j 

+(m3 - m2)wb\n coshf ^ J 

y(s) is found by scaling r(s), 

+ (mi - m2)u;a In 

+ (m2 - m3)wb In 

coshf ^ j 

coshf^) 

y(s) = r(s)(ymaa: - ymi„) + y„ (2.83) 

and h(s) is obtained by scaling r'(s), 

h(s) = r'^iymax ~ Umin)- (2.84) 
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Figure 2.14: Left, unsealed grid mapping function for the vertical mesh direction, 
showing the three regions (from the left) of shock, shear layer, and outer. Right. 
scaled grid mapping function y(s) used in actual simulations. AysL is the the width 
of the shear layer region. 

The mapping function y(s) used in simulations documented in the next chapter 

is shown on the right in Figure 2.14. In this grid, we have set 

sa — 0.23, St = 0.75,   and wa = Wb = 0.05 (2.85) 

and 
(yo - AySL) - Vmin       , {yo + AySL) - 2/„ ra =    and  rb = — — (2.86) 

*Jy Uy 

where y0 = 0 is the nominal center of the shear layer, AysL = 105 is the width 

of the shear layer region, and Ly = y^x - ymin is the height of the domain. The 

analytic mapping function h(s) and physical distribution of grid density 5/Ay(y) 

is shown for these parameter settings in Figure 2.15. The ^/-mapping described by 

these parameters is used in all of the Navier-Stokes (Chapter 3) and linearized Euler 

(Chapter 5) simulations discussed in this work. 
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Figure 2.15: Left: analytic mapping function h(s) for actual grid in y-direction, which 
is also Ay (s). Right Grid density (elements per reference length 6). 



Chapter 3 

Results from Direct Numerical 

Simulations 

3.1    Introduction 

In this chapter we present the results of the direct numerical simulations, using the 

numerical methods for solving the Navier-Stokes equations described in the previ- 

ous chapter. We will demonstrate that the sound generation process of a screech- 

type source is best described as "leakage" of the incident shock or compression wave 

through the shear layer as enabled by the passage of the instability wave vortices. We 

also explore the dependence of the radiated acoustic field on the parameters of shock 

(or compression-wave) strength, width, and instability wave amplitude. 

We begin our discussion of the simulations by presenting results for a free shear 

layer in absence of any incident shock or compression wave. We document its behavior 

and measure instability wave amplitude as a function of streamwise coordinate over 

a range of forcing conditions. These reference flows are used both to help extract the 

acoustic field in simulations containing incident shocks or compression waves and to 

provide basic instability wave data for theoretical analyses described in later chapters. 

We then present the results for a shock incident on a steady shear layer to illustrate 

the mean effects of the interaction. In Section 3.4 we describe the basic nature of the 

shock instability-wave vortex interaction and the resultant sound generation. We then 

56 
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Grid Size Nx x Ny 901/721* x 291 
Complete Domain Size K^min ■ xmax) X  {Vmin '• Umax) (0 : 90/72*) x (-15: 40) 
Interior Domain Size \-Emin ' xmax) * \Vmin '■ Vmax) (5/10* : 54/36*) x (-11.8 : 30) 

Time Step At 0.0119474 
Filter Coeff. a' 2.222 
Filter Period Nfilter every 10 At 

Table 3.1: Parameters for numerical simulations. Exceptions for: *Case Al. 
fCases SL1 and Dl; see Tables 3.3 and 3.4 for case designations. Interior domain 
refers to computational domain excluding boundary zones. 

Inflow Outflow Top Bottom 
Umax — 0.7677 — — 

4> — io-3 
— — 

0~max 10.0 0.15 5.0 5.0 
N 11 sponge 50/100* 360 10 24 
^sponge 5.0/10.0* 36.0 5.0 3.2 

Table 3.2: Boundary zone: Buffer zone and damping sponge settings. 'Alternate 
settings for weakly forced cases (SL3 and Dl; see Tables 3.3 and 3.4 for case desig- 
nations). 

demonstrate in Section 3.5 that the interaction and radiation behavior is essentially 

reproduced when incident waves of lower amplitude and broader profile than those 

of shocks impinge on the shear layer. The improved quantitative results afforded by 

these simplifications are presented. 

A summary of the parameter settings used in the numerical simulations presented 

in this chapter are given in Table 3.1. Boundary zone parameters are given in Ta- 
ble 3.2. 

3.2    Free Shear Layer 

In this section we carry out a limited study of the forced shear layer alone. In par- 

ticular, we document the amplitude of the instability waves as a function streamwise 

distance for several forced shear layers. These shear layers are later subject to shock 
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and compression wave interaction, and further form the base flow for linearized Euler 

simulations described in the next two chapters. 

All shear layers explored in this study have a Mach number of 1.2, a choice which 

represents a tradeoff between conditions sufficient to impose a reasonably strong shock 

and the need to eliminate other sources of sound. At minimum, a supersonic flow 

is of course necessary to support a standing oblique shock or compression wave in 

the high speed stream. There is also an upper limit on the Mach number. Above a 

certain Mach number the instability waves move at speeds supersonic relative to the 

quiescent side of the shear layer and emit Mach waves. However, it was found that 

even for Mach numbers such as 1.4 or 1.5, strong eddy shocklets readily form above 

and below the saturated vortices. As these shocklets require high resolution and 

because they can also serve as unintended sources of sound, the flow Mach number 

was reduced to 1.2. The steeper shock or compression wave angle at this Mach number 

also conveniently reduces the necessary length of the computational domain. 

The Reynolds number of the shear layers studied is 1000 based on initial vorticity 

thickness 6 and the velocity of the high speed stream, Ux. At this Reynolds number 

and at a grid density of 15 nodes per vorticity thickness in the direction across the 

shear layer, the entire instability-wave vortex evolution was sufficiently resolved. 

The forced shear layers presented in this work are summarized in Table 3.3. The 

forcing frequency is obtained from lir^ar stability analysis of the inflow profile, as 

described in Section 2.4.2. Case SLG was obtained by forcing the inflow at the most 

unstable frequency. Because of a spurious, rapidly growing subharmonic mode that 

leads to vortex pairing, only one case involving an incident wave interaction was 

carried out for this shear layer (Case Al; see Table 3.4). A reduction in the forcing 

frequency to half the most unstable frequency was found to satisfactorily suppress 

the subharmonic mode and prevent vortex pairing within the computational domain. 

The remaining shear layer cases (SL1 through SL3) are carried out at this frequency. 
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cases f/fo \Ü\max/Ui Xi/S X/6 
SLO 1.0 2.00 x 10"2 10.2 15.9 
SL1 0.5 2.00 x 10"2 23.4 31.9 
SL2 0.5 6.32 x 10"3 23.4 31.9 
SL3 0.5 2.00 x 10-3 23.4 31.9 

Table 3.3: Summary of free shear layers cases reported. f/f0 is the forced frequency 
normalized by the most unstable frequency of the shear layer, /0 = f*o/(U*i/5*) = 
0.328690/27T. Xt is the instability wave length. Other parameters are defined is 
Section 3.3 

3.2.1    Instability Wave Amplitude 

A measure of shear layer amplitude is based on fluctuation velocity magnitude, sam- 

pled at stations in the streamwise coordinate x. In terms of the square of the fluc- 

tuation velocity magnitude, we define the square of an instability wave amplitude 
as 

ppä + PS) 
2 

where for any f(t), its average over fundamental oscillation period T is J = T_1 /0
T f(t)dt. 

We can decompose this measure of instability wave amplitude (squared) into the con- 

tributions due to the streamwise and transverse velocity fluctuations: 

o       /"+0° 
K2 = 

J—oo 
-dy (3.1) 

K' = Kl + Kl (3-2) 

where 

r+oo 7,/2 . 2 r+ocuu 
U   = 7-oc Ydy 

J—oo     Z 
(3.3) 

In later chapters, we will examine the dependence of acoustic radiation levels on K, 

Ku, and Kv. 

If the time interval T is taken to be the fundamental sampling period for a dis- 

crete Fourier series representation of the velocity field in time, we can represent the 
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instability amplitude (squared) as the sum the velocity magnitudes of each Fourier 

mode 
Afc/2+1 Nk/2+1      ,.„ /\-   12   ,   1»   i2\ 

*2 =     E    *2-     E      r°<W+W\ (3.4) 
k=-Nk/2 k=-Nk/2 J~°° L 

where ük and Vk are the Fourier velocity coefficients: 

Ä*(*. ?/) = 4 E w(*> W. U)*™"1" (3.5) 
iV n=l 

iV is the number of evenly spaced points in time sampled in over the period corre- 

sponding to fundamental frequency u>. 

In Figure 3.1 we show K2 for the three shear layer forcing amplitude. For each 

case we show the fluctuation velocity magnitude for the fundamental mode (k = 1), 

the fundamental and first harmonic combined (k = 1,2), and the fundamental, first 

harmonic, and second harmonic combined (k = 1,2,3). The plots indicate that K2 is 

represented almost entirely by the fundamental mode. Each shear layer initially grows 

exponentially at approximately the predicted growth rate based on linear instability 

theory, followed by nonlinear saturation. This saturation process is associated with 

the formation of the vortex, and occurs progressively farther downstream at intervals 

consistent with the inflow forcing. The streamwise shift between each case is approxi- 

mately L/S = 8.5. We verify that these instability wave amplitude trends for the SI 1 

shear layer are independent of grid resolution and filter coefficient in Appendix P. 

In Figure 3.2 we show K2 and its components Ku
2 and Kv

2 from the SL1 shear 

layer. While the growth rate remains exponential, Ku
2 is the dominant component; 

however, as the instability wave saturates, the growth in Ku
2 diminishes and is over- 

taken by K2. In Figure 3.3 we show the same data on a linear scale. K2 exhibits 

a localized leveling at x/6 = 30, corresponding to the formation of the shear layer 

vortex, before continuing to its maximum value at approximately x/S = 40. The am- 

plitude associated with the vertical velocity component K2 continues to grow during 

the leveling of K2. After x/8 = 40, it decays slightly and reaches a local minimum 

when Ku
2 reaches its maximum.   The absence of these features in the sum K2 of 
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Figure 3.1: Instability wave amplitude (squared). Shear layer designations SL1-3 are 
given in Table 3.3. 
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Figure 3.2: Semi-log plot of instability wave amplitude squared for shear layer SL1, 
broken down by component and Fourier mode. 
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Figure 3.3:  Linear plot of instability wave amplitude squared for shear layer SL1, 
broken down by component and Fourier mode. 

the components suggests that this behavior arises from an energy exchange between 

different velocity components of the nonlinear instability wave. 

3.2.2    Other free-shear layer results 

We next compare the three shear layers (SL1 through SL3) in more detail. As one 

can deduce from Figure 3.1, the primary effect of reducing the inflow forcing level is 

that of delaying the onset of saturation farther downstream. This notion is important 

because one may modify the shear layer amplitude at a point of interest (e.g. where a 
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Figure,3 4: Comparison of instability wave amplitude from different shear layer cases 
after shifting x by 0 (SLl), 8.5 (SL2), and 17.0 (SL3). Note that the dip in SLl (bke 
case is due to inflow sponge. ^       ' 

shock interacts) either by changing the inflow forcing level, so as to modify the entire 

shear layer, or by moving the point of interest to the position of the desired amplitude 

without modifying the forcing level. This property will be exploited in Chapter 5. 

Were the shear layer to grow as predicted by linear statthcy theory, that is, based* 

on the inflow profile, a factor of 10 reduction in the ir^w forcing level would be 

equivalent to shifting the shear layer downstream by AL/8 = 15.34. However, because 

of shear layer spreading due to viscous diffusion, the growth rate decreases with 

streamwise distance.   The actual streamwise shift is approximately AL/6 = 17 0 

Using this measured shift, we superimpose the instability wave amplitude of the three 

shear layers K\ as shown in Figures 3.4 and 3.5.    The amplitudes agree well over 

the entire range, with a small shortfall near the maximum values for the more weakly 

forced shear layers. We attribute this discrepancy again to viscous diffusion within 

the shear layer.  The more weakly forced shear layers saturate farther downstream 

and therefore are subject to the viscous spreading of the shear layer over a greater 
streamwise distance. 
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Figure 3.5: Comparison of instability wave amplitude from different shear layer cases 
after shifting a; by 0 (SL1), 8.5 (SL2), and 17.0 (SL3). 

In Figure 3.6 we monitor shear layer growth rate among the three cases. We 

evaluate growth rate by using the derivative of the logarithm of instability wave 

amplitude K with respect to streamwise coordinate. We observe that for much of the 

inflow sponge, the growth rate falls below the theoretical target of -an = 0.15015, 

then recovers near the exit of the sponge. Note that the sponge width for SL3 is *wice 

that of SL1 and SL2. There is evidence that we underestimated the viscous spreading 

rate in the inflow sponge reference solution. These discrepancies are however not 

significant for the development of the shear layer; further, the present studies rely 

on direct measures of instability wave amplitude, are therefore not sensitive to small 

departures from theoretical development. Beyond the sponge, the reduction in growth 

rate observed in Figure 3.6 is attributed to the viscous thickening of the shear layer, 

followed by the further reduction associated with shear layer growth and saturation 

due to vortex roll-up. As with instability wave amplitude, we verify that shear layer 

growth rate is insensitive to our choice of grid resolution and filter coefficients in 
Appendix B. 
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Figure 3.6:  Growth rate of instability wave amplitude K compared to theoretical 
growth rate -a* obtained from linear stability analysis of inflow profile. 

Finally we document the shear layer width, in terms of mean vorticity thickness, 

as function of streamwise coordinate (Figure 3.7). We note the three distinct regions 

of growth: a weak growth due viscous diffusion, the rapid growth due to nonlinear 

instability waves, and saturation. The fully saturated layer has an effective width 

four times that the weakly disturbed shear layer. Much of the shock-instability wave 

interaction we consider in later chapters occurs in this region. 

3.3    Parameters 

To clarify the presentation of the results in the following sections, we summarize 

all parameters at this point. The Mach number of the high speed stream, which 

approximates the jet below the shear layer (Figure 1.9), is denoted M. The Mach 

number of the low speed stream is essentially zero. The Reynolds number Re is 

based on the initial vorticity thickness 8 of the shear layer and the velocity Ui in 

the high speed stream. The pressure rise across the incident shock or compression 

wave is Ap, and we normalize this by the mean inflow pressure p«,. The width of the 
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Figure 3.7: Mean vorticity thickness of SL1, SL2, and SL3 shear layers. 

shock or compression wave profile, w, is based on the distance between the points at 

which the pressure departure from its asymptotic values decreases to 1% of Ap. The 

compression wave profile we impose is based on the hyperbolic tangent function. // is 

the amplitude of the radiated acoustic wave. Two relevant angles are the shear layer 

mean deflection angle <f> (Figure 3.8) and the observer angle 9 (Figure 1.9). Both are 

measured colter-clockwise from the downstream direction about the point at which 

the mean center-line of the shock or compression wave meets the sonic line of the 

mean shear layer. This point coincides approximately with the "acoustic source", r 

refers to the radial distance from this location, and we normalize it by the acoustic 
wavelength A. 

3.4    Shock Shear-layer Interaction 

In this section we establish the basic behavior of the shock shear-layer instability 

wave interaction and the resultant acoustic field. Only a single set of operating con- 

ditions for the shock is considered due to the computational expense associated with 

shock capturing.  The cases here make use of a "real" shock in the sense that the 
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cases wave type shear layer Ap/Poo w/5 0 
Al shock SLO 0.25 ENO 10° 
A2 shock SL1 0.25 ENO 10° 
Bl weak compression SL1 0.05 2 2° 
B2 weak compression SL1 0.10 2 4° 
B3 weak compression SL1 0.05 4 2° 
B4 weak compression SL1 0.05 8 2° 
Cl weak compression SL2 0.05 2 2° 
Dl weak compression SL3 0.05 2 2° 

Table 3.4:   Summary of cases reported.    "ENO" indicates use of shock capturing. 
Other parameters are defined is Section 3.3 

imposed shock is of significant pressure rise (25% above the mean) and of a thickness 

(less than 5/2) that requires the use of a shock-capturing scheme for the numeri- 

cal solution to remain stable. These cases were run with the ENO shock-capturing 

treatment activated. Although the ENO scheme is applied zonally to a rectangu- 

lar region containing little more than the oblique shock, its application was found 

to increase the computational expense significantly. Furthermore, the scheme was 

found to produce spurious oscillations of the order of 1% of the pressure jump. These 

disturbances where found to convect downstream with the flow. The recent work of 

Lee and Zhong [19] corroborates our observed deficiencies with the ENO scheme. For 

these reasons and due to accuracy concerns regarding the acoustic field outside the 

shock-capturing zone, the number of runs using the shock were limited. These cases 

therefore serve as a reference for establishing the relevance of the later cases, in which 

we substitute the shock with weakened compression waves with broadened profiles. 

3.4.1    Interaction of an Oblique Shock with Steady Shear 

Layer 

As anticipated in Section 2.5, the introduction of an oblique shock results in the 

deflection of the shear layer in the direction away from the high speed stream. An 

example of this phenomenon is shown in Figure 3.8, wherein a steady shear layer at 

the standard conditions of M = 1.2 is subjected to an oblique shock. The pressure 
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Figure 3.8: Deflection of unforced sheax layer by incident shock and reflected expan- 
sion. Shown in contours of density. Deflection angle <j>= 10°. The distorted contour in 
the reflected expansion wave is due to bottom boundary conditions (damping sponge, 
cr0 = 5, sponge width = 35 ). 

rise across the shock is 25% above the ambient pressure, corresponding to a normal 

Mach number of 1.1. The shock meets the shear layer and reflects as a Prandtl-Meyer 

expansion fan, which is absorbed by the damping sponge boundary zone along the 

lower edge of the domain. The resultant deflection turns the shear layer approximately 

10° from its undisturbed position. Because the flow above the shear layer is quiescent, 

the deflection has only a small impact on the pressure held there. However, the 

deflection does impact pressure disturbances associated with instability waves. 

3.4.2    Shock Evolution and Acoustic Wave Generation 

The results described here correspond to the flow conditions given by Case Al in 

Table 3:4. To illustrate the overall interaction and sound generation process, we plot 

the dilatation and vorticity fields of the flow in Figure 3.9 over one instability wave 

oscillation. 

The shear layer, as indicated by the green contour lines of vorticity, is forced 

upstream of the left edge of the visualized region. Instability waves grow and convect 
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Figure 3.9:  Shear layer instability wave / shock interaction and the acoustic wave 
generation for Case Al, shown at intervals of t/T   ■„        - i /«    Q     TU     I 
Qro ^;io+„+-      re "itcivdj& oi i/1oaaiiation = 1/8.    Smooth colors 
are dilatation (from compression :  very strong-yellow, strong-red, weak-white- 
expansion:   weak-black   strong-blue), superimposed by "contours o"£ 

(Au/(Ux/5) = 2 X 10   *).   M = 1.2, Mnorrm = 1.1. * 
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Figure 3.10: Time evolution of Shock in Case Al. Time traces indicate speed of shock 
in streamwise direction and strength of shock as sampled at y/S = -2.4. Local shock 
strength Mshock is based pressure ratio across shock. M3h0ck = 1.1 prescribed 
mean shock strength «» Ap/Poo = 0.25. Spatial variation in Figure 3.11 occur at time 
slices A and  B . 

downstream to the right, evolving into vortices. The oblique shock, indicated in yellow 

in the dilatation field, oscillates as the instability waves pass. A compression front of 

a cylindrical acoustic wave is emitted from this interaction site during each period. 

The shock is deformed near its reflection point, or forms a "tip", as the vortices pass, 

such that the tip follows a counter-clockwise circular path (i.e., the same sense of 
rotation as that of the vortices). 

The speed, orientation, and strength of the shock vary through this cycle, as 

illustrated in Figure 3.10 and Figure 3.11. To obtain the time evolution (Figure 3.10) 

we locate the pressure jump associated with the shock and track its x-component 

of velocity at fixed y. The spatial variation plots (Figure 3.11) show shock strength 

as a function of vertical coordinate y. The pressure ratio is converted to equivalent 

normal Mach number based on the Rankine-Hugoniot shock jump conditions. We 

find that the shock translation rate is greater as the tip travels upstream through the 

braid between the vortices and less as it travels downstream through the vortex. The 
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Figure 3.11: Spatial evolution of Shock in Case Al. Spatial variation of shock strength 
follows shock at time slices |_AJ, [B], as shown in Figure 3.10. Acoustic wave is released 
near time B 

compression associated with the acoustic wave is found to be generated during the 

upstream travel of the shock. The compression region of the acoustic wave profile is 

substantially shorter than the acoustic wavelength. This result is seen in the narrow 

dilatation distributions in the acoustic waves shown in Figure 3.9. 

There other wave-like features which appear only inside the supersonic flow, such 

as the extension of the acoustic pulse back into the supersonic flow upstream of the 

shock. Another is a structure which forms when a region of compression conven- 

ing with the vortex passes through the shock and is amplified. The latter feature 

subsequently evolves into acoustic waves oriented upstream but, in net, traveling 

downstream in the supersonic flow. It resembles the wave-like structures propagating 

downstream inside a screeching jet observed by Suda et al. [61]. 

In Figure 3.12 we show Case A2 visualization detail of interaction between the 

SL1 shear layer (forced at one half the most unstable frequency) and a Mn^,^ = 1.1 

shock. We moved the point of interaction downstream to x/8 = 40 to accommodate 

the reduced instability wave growth rate. The increased instability wave size results 
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t/T= 0/32 i/T=6/32 t/T= 12/32 

Figure 3.12: Visualization of Case A2; dilatation field superimposed by contours of 
vorticity. 

X/S = 32 

Figure 3.13: Sampling of acoustic field at r/X = 1.5, 9 = 170°. 

in larger excursions in the shock motion. At t/T = 0, the incident shock (yellow) 

and a reflected compression wave (red) appear to meet at a triple point with a shock 

that extends into the vortex. The reflected expansion fan is visible in blue to the 

right of the reflected compression wave. Both the incident shock and its reflection 

appear to penetrate the shear layer in the braid region (t/T = 6/32), eventually 

to escape together (at t/T = 12/32). The acoustic field sample at 1.5 acoustic 

wavelengths upstream from the source is shown in Figure 3.13. The acoustic trace 

exhibits a characteristically sharp compression, followed by a slow decay. From this 

measurement, we find a pressure amplitude of approximately pVPoo = 5 x 10-3 (or 

SPL of 140 dB). 
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3.4.3 Resolution Considerations and the Compression Wave 

The instability-wave shock interaction results of Cases Al and A2 readily capture 

the intrinsic phenomenon of screech-type sound generation. However, the compact 

wavefront of the acoustic field was found to be insufficiently resolved. The numerical 

dissipation which arises from this under-resolution would lead one to underpredict 

the acoustic levels. The sound pressure level reported above therefore represents 

a conservatively low estimate. To obtain satisfactory acoustic measurements, we 

recognized that we would be forced to either dramatically increase grid resolution in 

the far field to permit adequate resolution, or make use of ENO shock capturing over 

the entire domain. Both options were rejected on the basis of computational expense. 

To address this problems in subsequent simulations, we chose instead to replace the 

oblique shock with oblique compression waves. The profile of the incident compression 

wave is distributed over a wider region so as to be nearly isentropic, and its amplitude 

is much reduced from that of the shock. The radiated acoustic waves generated in 

these later cases (B1-B4, Cl, Dl) have broadened, resolvable profiles. 

3.4.4 Acoustic Measurements 

The pressure field typical of a computation such as that described above is shown in 

Figure 3.14. Extracting the acoustic pressure amplitude cannot be accomplished at 

every point in the field due to interference with fluctuations in pressure associated with 

the instability waves. The sound pressure level measurement given above for Case A2 

was sampled just inside the inflow to minimize this contamination. The strategy we 

utilize for extracting the sound field requires us to compute two forced shear layers 

in which the forcing is synchronized: one case contains the incident shock wave and 

the other does not. The acoustic fluctuations are then obtained by subtracting the 

dependent field variable of choice between the two fields. An example of the acoustic 

extraction is illustrated in Figure 3.15. The method is attractive because in addition 

to eliminating the hydrodynamic fluctuations common to both fields, the method 

in theory permits one to eliminate sound sources which are common to both fields, 

thereby isolating the sound due to the interaction.   The method is not faultless, 
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Figure 3.14: Pressure field from Case Bl. 

as the deflection of the shear layer in the presence of the shock or compression wave 

distorts the field so as to cause some degree of misalignment and imperfect cancellation 

between the fields. This effect is most severe downstream of the interaction site; as 

we are most interested in the upstream directivity of the sound generation, useful 
results can still be obtained. 

3.5    Weak Compression Wave Interaction 

In the following we present the results of weak compression wave - vortex interactions, 

cases for which we have confidence in the numerical accuracy of the acoustic field. 

We investigate the dependence of the acoustic field on variations in compression wave 

amplitude, compression wave profile width, and instability wave forcing amplitude as 

outlined in Table 3.4. Although forcing frequency remains fixed through these cases, 

its value is half that used in Case Al. At this lower frequency, we found that the 

onset of vortex pairing downstream of the interaction site is suppressed. 

The computations use a mesh of 900 by 290 points.   The mesh is uniform in 

the streamwise direction, where the grid spacing Ax/S = 0.10.   In the transverse 
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P 

Shock Shock-less 

Figure 3.15: Subtraction technique for extracting acoustic field. Method involves 
subtracting pressure field of shockless shear layer with shear layer with shock. Raw 
pressure traces of two shear layers, and their resultant difference. Sampled from Case 
Bl at r/X = 1.3, 6 = 135°. 

direction, the grid spacing Ay/5, which is non-uniform, extends from 0.067 in the 

region 46 on either side of the center-line of the shear layer to 0.50 near the upper 

boundary and 0.13 near the lower boundary. The computational domain (excluding 

boundary treatment regions) extends 50 vorticity thicknesses 6 in the streamwise 

direction, and 356 above the shear layer center-line and 106 below. The compression 

wave profile we impose is based on the hyperbolic tangent function. 

3.5.1    Overall Interaction Behavior for Compression Wave 

Cases 

The behavior of the weak compression wave - vortex interaction is found to closely 

follow the shock-vortex interaction. In Figure 3.16 from Case Bl, we show the weak 

compression wave counterpart to Figure 3.9 of Case Al (or A2). Note, however, 

that the field-subtraction method is now employed to bring out the dilatation field 

associated with the generated sound waves. This is necessary to visualize the weaker 

acoustic waves amongst the dilatation field convecting with the vortices. 

As the instability wave vortices pass over it, the oblique compression wave (visu- 

alized in red and yellow at the bottom of each plot) undergoes a periodic deformation 

that resembles, both in extent of oscillation and phase, the shock motion for case 

Al. The visualization also shows, however, that during each period, circular acoustic 

waves from two different points of origin are produced such that their wave fronts 
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coincide in the upstream direction. The lagging wave front of smaller radius is the 

primary acoustic wave of interest, as it is generated by the oblique compression wave 

with the instability wave vortex. The leading wave front of larger radius is produced 

farther downstream by a downstream traveling compression wave in the previous cy- 

cle of forciiig. This secondary wave is weaker, as will be shown in results below. The 

constructive interference in the upstream direction is regarded as a coincidence and 

shall not be confused with the constructive interference of the phased sources that 

arise in full screech. 

The traveling compression wave is observed in all weak compression wave cases 

at large forcing(Bl-B4), although the phase of the secondary sound wave appears to 

vary with compression amplitude. This traveling compression wave is also observed in 

Case Al, but the secondary acoustic wave is not. In that case, however, the traveling 

wave is much weaker than the shock, whereas in B1-B4 it is of the same order of 

magnitude. 

3.5.2    Directivity 

Next we consider the directivity of the radiated sound field. For Case Bl, Figure 3.17 

illustrates the variation of the temporal profile of the acoustic pressure perturbation 

at various angles along an arc centered about the source location. In Figure 3.18 we 

show detail of the temporal profiles across the shear layer. The radius of this arc is 

equal to an acoustic wavelength A, or 325. The field differencing method for extracting 

the acoustic field as described above is applied to the pressure variable. In terms of 

the acoustic pressure amplitude, the pressure rise across the short compression region 

p'/Poo is consistently about 0.002 (0.2%) for most of the angles shown. Hence, within 

the forward arc, the directivity of the acoustic field is found to be somewhat uniform, 

except for a small decay across the shear layer itself. The shift in the profile peak 

at angles below the shear layer result from the refraction of the acoustic wave by 

the mean (supersonic) flow. However, there is clearly no decay to zero, as would be 

suggested by the model of Kerschen and Cain [16]. Indeed, the acoustic waves are 

found to easily propagate into the supersonic shear layer, behaving as oblique Mach 
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Figure 3.16: Shear layer instability wave / weak compression wave interaction and 
acoustic wave generation for Case Bl, shown at intervals of t/Toscillation = 1/8. 
Smooth colors are fluctuations in dilatation (from compression: very strong—yellow, 
strong—red, weak—white; to expansion: weak—black, strong—blue), superimposed 
by contours of vorticity (Au/iU^/ö) = 2 x HT1). The fluctuating dilatation field 
was obtained using the field subtraction technique. A secondary wave can be seen 
leading the primary acoustic wave. 
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waves generated by an upstream traveling disturbance. Such upstream propagating 

acoustic waves are readily apparent in still images (e.g. Figure 3.22, left column) and 

in animations based on these simulation results. The slight decay may be attributable 

to local distortion by the mean shear flow. The distortion of the profile near 9 = 90° 

is attributed to a misalignment of "hydrodynamic" fields in the field subtraction 

method. The misalignment renders the acoustic amplitude to be less reliable in the 
downstream arc. 

We next consider details of the acoustic profiles directly and their dependence 

on the compression wave parameters. (In our discussion here we freely interchange 

the use of temporal and spatial profiles, given that the acoustic waves travel at a 

fixed speed and that their decay (~ r~^) is small over the length scales we are 

considering.) The profile of the acoustic wave is consistent with the profiles observed 

in the shock interaction cases: compression occurs over a short time compared to the 

acoustic wave-length, whereas expansion occurs over a somewhat longer time. 

3.5.3    Variation with compression wave amplitude 

The effect of varying the compression wave amplitude is illustrated in time traces 

of the acoustic pressure fluctuation. As shown in Figure 3.19, where we compare 

Case Bl to Case B2 at two observer angles 9, a doubling in the compression wave 

amplitude doubles the acoustic amplitude while retaining the profile shape of the 

primary acoustic wave. The notion that profile shape is preserved is further reinforced 

when we scale the acoustic amplitude j/ with the compression wave amplitude Ap, 

as shown in Figure 3.20. The secondary wave peaks are not in phase. Visualization 

studies of Case B2, which are not presented here, show that the traveling compression 

wave responsible for producing the secondary wave is farther upstream than in Cases 

Bl and B3 when the vortex passes. This results in the earlier emission observed in 

B2. The reason for the position of the traveling wave to vary with the strength of the 
prescribed wave is not understood at this point. 
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Figure 3.17: Acoustic fluctuation trace at various observation angles 6, r/X = 1.0 for 
Case Bl. Peak of primary acoustic wave, produced by oblique compression wave 
- vortex interaction. Peak of secondary acoustic wave, produced by traveling 
compression wave - vortex interaction. Amplitude of primary wave is determined 
from change in height of sharp compression immediately preceding primary wave 
peak. 
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Figure 3.18: Acoustic fluctuation trace at various observation angles 9, r/X = 1.0 for 
Case Bl. Mean .streamwise velocity profile is given at right. 

0.5 1.0 

'I-* oscillation 

(r,0) = (1.3A,135°) 

2.0 

»\ ,'\ 
2X)    - •   \ •   »( 

CO 
O 
»—I 

1.0   ■ jT\' 
\ 

X OX)    - 

-1.0    - 

J\ N^ 

JL <CJ ^X*         »** ^^   ' 

''•—" 

■ö. -2X>    - 

-3.0    - 1 , ,  —, , ,  l 1  

0.0 0.5 1.0 1.5 

t / -L oscillation 

(r,0) = (1.3A,16O°) 

2.0 

Figure 3.19: Acoustic fluctuation trace at two observer positions for different com- 
pression wave amplitude, fixed width (w/6 = 2).    Case Bl (Ap/p^ = 0.05); 
 Case B2 (Ap/Poo = 0.10). 
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Figure 3.20:  Same as Figure 3.19 except acoustic amplitude is renormalized to re- 
spective compression wave amplitudes. Case Bl (Ap/p«, = 0.05); Case B2 
(Ap/Poo = 0.10). 

3.5.4    Variation with compression wave width 

The effect of increasing the compression wave width on the acoustic wave-form is 

explored through a comparison among cases Bl and B3, and B4. The parameter w 

is set to 26, 46, and 86, respectively. The purpose of investigating the dependence 

of the acoustic field on compression wave width is to determine the role compression 

wave gradients and spatial extent of the profile. The width of the compression wave 

imposed in Case B4 is 40% of the instability wave length (or, alternatively, 25% of 

the acoustic wavelength) and therefore non-compact. In Figure 3.21 we show time 

traces of acoustic pressure fluctuation over two periods as observed at two locations 

upstream of the compression-wave - instability-wave interaction site. Contributions 

from both primary and secondary sources are present. The peak value of the primary 

acoustic wave decreases with increased compression wave width, as shown in the first 

plot in Figure 3.21. However, the location of the peak does not shift with increased 
width. 

One should note that although the amplitude of the incident compression wave 

does not change with compression wave width, the region of overlap between the 

compression wave and the reflected expansion wave (region 1-2-3 in Figure 2.13) does 

increase with width. The lower extent of this region of overlap (point G in Figure 2.13) 
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Figure 3.21: Acoustic fluctuation trace at two observer positions for different com- 
pression wave width, fixed amplitude (Ap/p^ = 0.05).   CASE Bl (w/S = 2); 
 CASE B3 (w/S = 4); — - — CASE B4 (w/S = 8).   Thick arrow:  primary 
acoustic wave; thin arrow: secondary acoustic wave. Primary and secondary waves 
have coalesced in second plot. 

moves from approximately y/S = -0.75 to -3.0 as the width changes from w/S =■ 2 

to 8 in the steady case. Hence, the nearest approach of the full scale of the incident 

compression wave moves away from the centerline of the shear layer as the width of 

the compression wave is increased. 

3.5.5    Variation with instability wave amplitude 

As mentioned above, we have found previously that the acoustic amplitude scales 

directly with the pressure rise of the compression wave. Theoretical analyses such 

as [16] and [62] take the approach that the acoustic field arises from the product of 

fluctuations due to the instability waves and the compression wave. Such an approach 

is consistent with a direct scaling with compression wave amplitude. The approach 

would also suggest a linear dependence on instability wave amplitude. To test this 

hypothesis, we carried out the series of cases Bl, Cl, and Dl, over which the shear- 

layer forcing amplitude was reduced by an order of magnitude (see Tables 3.3 and 
3.4). 
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Although in all three cases the location of the compression-wave instability-wave 

interaction site is the same, at approximately x/S = 40 from the domain inflow, 

the development of the shear layer is different. In Case Bl (shear layer SL1), the 

interaction site is located downstream of the point at which the instability wave 

amplitude K reaches its maximum value (see Figure 3.1). However, in Case Dl 

(shear layer SL3), the interaction site lies upstream of this point, though still in the 

region in which instability wave evolution has become non-linear. Therefore, the 

instability wave "amplitude" at the interaction site does not decrease by the same 

amount the inflow forcing is reduced. 

The result of this reduction in instability wave amplitude is the apparent elimina- 

tion of the acoustic emission. Figure 3.22 shows a sequence of visualizations of both 

Case Bl and Case Dl over one cycle. The region over which the compression wave in 

Case Dl is perturbed is dramatically reduced; the expansion reflection remains vis- 

ibly "attached", unlike in Case Bl where the analogous feature is shed downstream 

during each oscillation. The circular arc of the dominant acoustic wave of Case Bl 

does not exist in Dl. There is a very weak acoustic wave emitted by the flow in 

Dl. However, its origin is far downstream of the interaction site. Its frequency, at 

the sub-harmonic of the forced frequency, suggests that its generation is associated 

with the vortex pairing which begins to occur near the domain outflow. We show 

further detail of the compression wave motion and initial formation of the acoustic 

compression front (where visible) in Figure 3.23. 

The acoustic measurements taken in these flow fields indicate that the dependence 

of the acoustic amplitude instability wave amplitude is nonlinear. In Figure 3.24 we 

show acoustic pressure traces sampled at r/S = 1.3, 0 = 135°. Although the trace for 

the intermediate case Cl retains most of the characteristics observed in the trace for 

Case Bl, namely the sharp compression and gentler expansion, these features are lost 

in the trace for Case Dl. The subharmonic disturbance observed in the visualization is 

quite evident; only an upper bound for acoustic amplitude can be given for this case. 

In Figure 3.25 we plot the mean-to-peak amplitude of the acoustic pressure (Aj/) 

against the three measures of instability wave amplitude, K, Ku, and Kv. A linear 

scaling of acoustic amplitude with instability wave amplitude is clearly not observed 
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Figure 3.22: Case Bl (left) and Case Dl (right), at intervals of t/Tosc = 1/4. Colors 
are dilatation (from compression: very strong—yellow, strong—red, weak—white; to 
expansion: weak—black, strong—blue), and vorticity (A(/(uoo/'5) = 2 x 10-1). In 
third frame of Case Bl, primary acoustic wave is solid line, secondary is dashed. Solid 
arrow—primary source; dashed arrow—secondary source . 
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Figure 3.23: Detail of interaction region for Cases Bl, Cl, and Dl. Extent of com- 
pression wave motion in the streamwise direction is denoted Ax3hock- 

0.03 

0.0 0.5 1.0 
11J- oscillation 

1.5 2.0 

Figure 3.24: Acoustic pressure traces sampled at r/A = 1.3, 9 = 135°, for Cases Bl 
( ), Cl ( ), and Dl ( ). 
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Figure 3.25: Acoustic pressure amplitude (mean to peak acoustic pressure Ap' normal- 
ized to compression wave amplitude Ap) plotted against instability wave amplitudefs) 
measured at the interaction site. 
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at the higher instability wave amplitudes. At the lower amplitude the uncertainty in 

the acoustic results precludes definite conclusions; however, as the dominant signal in 

Case Dl has been identified to originate from a location other than the compression- 

wave instability-wave interaction site, and no other disturbance is identifiable in the 

visualization, one may conclude that the acoustic signal of interest is significantly 

weaker than the upper bound of Aj//Ap = 0.008 given in Figure 3.25. 

3.6    Summary of results from direct numerical sim- 

ulations 

In this chapter we have presented the results from numerical simulations of the in- 

teraction between shear-layer instability waves and shocks or compression waves. We 

have shown that in the case of large amplitude instability waves, the passing of the 

shear-layer vortices imparts large distortions in the shock position. We have shown 

evidence that the sound generation process is analogous to the leakage of the shock 

at specific phases in the interaction process, namely, as the shock travels upstream 

between the vortices. This process is reproduced even for compression waves of sig- 

nificantly reduced strength. Interactions involving weaker compression waves enabled 

more accurate acoustic measurements to be carried out, where the acoustic field was 

found to scale directly with compression wave strength. Finally, an investigation into 

the dependence of acoustic amplitude on instability wave amplitude reveals the first 

evidence that the relationship between the two is nonlinear. Exploiting the success 

of the compression wave results, in the following chapter we introduce simplifica- 

tions to the governing equations in order to study the sound generation process more 

thoroughly. 



Chapter 4 

Linearized Euler Computations: 

Method 

4.1    Background 

In the previous sections we have discussed the interaction of the shear-layer instability- 

waves with the oblique compression-wave, and the resulting sound. All components 

of the flow, namely, the unsteady shear layer, the incident compression-wave, and the 

acoustic field, were computed together by solving the full Navier-Stokes equations. For 

sufficiently large instability waves, we have shown that the incident compression-wave 

and the compression-front of the acoustic wave to be continuous, and have suggested 

that the sound generation process may be analogous to the propagation of acoustic 

waves through an unsteady shear layer. To explore this possibility, we consider the 

propagation of linearized, inviscid disturbances through an unsteady transonic shear 

layer. This analysis is carried out by solving the Euler equations linearized about an 

unsteady base-flow. 

In this chapter we discuss the derivation and implementation of this linearized ap- 

proach. We will show in the next chapter that this method reproduces the sound field 

for weak compression waves interacting with weak or strong instability waves. We 

will use this method to reveal a number of important dependencies between acoustic 

amplitude and the instability wave field. Although solutions to the linearized Euler 

89 
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equations have previously been utilized to investigate supersonic jet noise (see for 

instance Mankbadi et al. [25] and Dahl and Morris [3]), those studies involved lin- 

earizations which were performed about a steady base flow. The present investigation 

represents the first use of the Euler equations linearized about an unsteady base f! JW 

to obtain jet noise results. 

4.2    Equations of Motion 

The flow we consider is divided into two components: the base flow and the per- 

turbation field. The base flow is prescribed and is therefore unmodified by the per- 

turbations. Conversely, the evolution of the perturbation field, whose magnitude is 

assumed to be much smaller than that of the base flow, depends strongly on the base 

flow. In the context of the instability-wave oblique-shock interaction problem, the 

unsteady shear layer forms the base flow. The perturbation field is made up of the 

incident shock (or, more precisely, an incident Mach wave), the acoustic field, and 

any other inviscid disturbances that results from the interaction. 

The physical flow variables are decomposed into the base flow (tilde) and pertur- 

bation components (primed) as follows. 

p(x,t) = p(x,t) + ep'(x,t) (41). 

p(x,t) = p(x,*) + ep'(x,*) (4.2) 

tti(x,t) = üi(x,t) + eu'i(x,t) (4.3) 

Et(x,t) = Et(x,t) + eE't(x,t) (4.4) 

nj(x,t) = fy(x,t) + e<.(x,t) (4.5) 

where £<1. Note that the base-flow is generally unsteady. 

To obtain the linearized equations, we take the following steps. We substitute 

the full variables into the Navier-Stokes equations. We collect the terms according to 

their order in the small parameter e. We assume that the base-flow variables alone 

satisfy the Navier-Stokes equations; as a consequence all 0(1) terms can be removed. 

The terms of 0(e2) are neglected.   The remaining terms are of 0(e).   Finally, we 
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observe that for Reynolds numbers of the order we consider (Re = 1000), the terms 

of 0(e) containing the viscous shear stress tensor and heat flux vector will be small, 

will not a play a major role in the propagation of acoustic waves, and thereby may 

be neglected. We note that the viscous shear-stress terms are still retained in the 

base-flow variables, allowing us to utilize viscous, heat conducting base flows. 

Thus, substituting Equations 4.1 and 4.3 into the continuity equation, and col- 

lecting terms according to the order in e, we obtain, 

dp     (ßüi)' 
dt      dxi 

+ e dp'      &  ,~ ,      ,~ s + O(e2) = 0. (4.6) 

The analogous result for the momentum equation is, 

+   e dr (pu'i + p'üi) + — (pÜiUj + pu'iUj + p'üiüj + Sijjf) 
dxj 

+   O(e2) = 0. 

dxj 

(4.7) 

And for energy, it is, 

dt 

+e 

'** + £[(*+*)*] + ** 
8Et      d 

_d_ 
dxi     dxj 

dxj        dxj («to) 

+0(e2) =   0. 

(4.8) 

We also omit terms of order e/Re, namely d^/dij, dcfc/dxi, and d(üiT[- + 
uijTij)/dxj. We now find it convenient to define small disturbance conservative vari- 

ables, 

Q'i   =   ßu'i + p'üi, t = l,2 

Q'z   =   P' 
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QA   =   K (4.9) 

These variables Q'm = Qm - Qm, m = 1,2,3,4 represent the departure from the 

base state, ?s expressed in terms of the full conservative variables (Qi = pui,Q2 — 

pui-, Qz — p, QA — Et). We also find it convenient to define some inverse relations, 

M/ = «Iz^i and j/ = (7 - 1) [Q'A - [ükQ'k - \ükükQ'z}]. Substituting these defi- 

nitions into the above expressions for mass, momentum, and energy (Equations 4.6, 

4.7, and 4.8), we obtain the Euler equations linearized about an unsteady base flow. 

dQ'3 dQ'{ 
(4.10) dt dxi 

~dt    =   -]foAü& + *Cfi-üiü&* + 6V!/) « = 1,2        (4.11) 

^   =   -^[&+P)< + (Q*+P')üi] (4-12) 

4.3    Numerical Solution to the Small Disturbance 

Equations 

The equations 4.10 through 4.12 are solved numerically in much the same way the 

Navier-Stokes equations are solved in the direct numerical simulations. The spatial 

derivatives are found using the sixth-order compact Pade method, and the right-hand 

side is advanced in time using the third order compact storage Runge-Kutta scheme. 

Damping sponges and buffer zones are again used as boundary treatment methods; 

however, as the disturbances in the solution variables are significantly smaller, these 

boundary zones can be more compact. However, a nonreflecting boundary condition 

linearized about an unsteady base flow is currently unavailable. The Thompson non- 

reflecting boundary conditions discussed in Section 2.3.1 do not simply accommodate 

the separation between base flow and perturbation field in the instance that the base 

flow is unsteady. Instead, we use simple characteristic boundary conditions based on 

Riemann invariants to maintain well-posedness. The Riemann invariants are evalu- 

ated using the base flow.  The compression wave boundary condition is imposed in 
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the perturbation variables in a fashion similar to that described in Section 2.5.2. The 

difference is that because the equations are linear in the fluctuations, the compression 

waves will orient themselves according to Mach angles in the base flow. Their specifi- 

cation therefore does not account for nonlinear effects. We verify that the numerical 

solutions to the linearized Euler equations behave linearly in Appendix B, Section B.3. 

Numerical filtering is again used, in this case to counter-act numerical instabilities 

whose exact origin is not known. We note that our method solves inviscid equations 

using a central differencing method, and thereby contains little physical or numerical 

dissipation. Details of the choice of filtering parameters are given in Appendix B, 

Section B.2. 

4.3.1    Base Flow 

The base flow terms are prescribed. In practice, they are supplied either analytically 

through a model for the unsteady shear layer, or from data obtained from numerical 

simulations. For the latter case, it is be assumed that the base flow is periodic in 

time, so that it can be represented with a temporally limited data set. Furthermore, 

to take advantage of the periodicity, the base flow is furnished to the solver in terms 

of Fourier coefficients, rather than in a "time accurate" fashion. This strategy enables 

us to accurately represent the br^e flow in time without significant memory usage. 

With Fourier series reconstruction, it also provides a simple means for accurately 

interpolating in time, allowing us to freely decouple (within stability limits) the time 

step of the computation from the base flow data. 

The Fourier coefficients of the base flow variable are computed from real data. 

Therefore, the coefficients will consist of complex conjugate pairs, except for the 

mean flow coefficients; we can reduce the memory storage of the base flow by near 

half. Suppose the coefficients of the base flow were obtained through discrete Fourier 

transform in time using N equally spaced samplings over one flow oscillation. The 

Fourier coefficients obtained would then have indices n = — N/2 to N/2 + 1 and be 
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related to the original data as 

N/2+1  „ 

Q(x,y,t)=    J2   Q0(x,y)exp(-imjt) (4.13) 
n=-N/2 

~ i.* 

which will be real, since Q_n = Qn. u is the fundamental frequency of the base flow 

data. Hence, we can obtain the same temporal data by taking the following sum: 

N/2  - 

n=l 
Q(x, y,t) = Q0 + J2   Qn exp(-inujt) + Qn exp(inu>i*) (4.14) 

We have omitted the oddball wave-number n = N/2 + 1. Assuming now that 

the coefficients have been interpolated to the computational grid, each time step of 

the computation would require a Fourier reconstruction at each grid node for time 

t. This reconstruction procedure can be completed at the beginning of each time 

step evaluation. The base flow quantities are then effectively prescribed, and the 

computation of RHS can be carried out. 

We tested this reconstruction method on base flow data obtained from the numer- 

ical simulations of Chapter 3. We computed the discrete Fourier transform in time 

of shear layer SLl (see Table 3.3 over two oscillation periods. The Fourier transform 

was taken over two periods to average out the effects of any sübharmonic modes. 32, 

64, and 128 samples in time were taken in the three test cases. After removing the 

modes due to the subharmonic, we reconstructed the time accurate data using Equa- 

tion 4.14. Figure 4.1 shows the vorticity field for the three cases compared to original 

time domain data. We conclude that for these shear layers, at least 64 samples per 

oscillation period is necessary for a smooth representation in the base flow. 
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Figure 4.1: Reconstructed samples of SL1 sheax layer based on Fourier coefficient 
reconstruction in Eq. 4.14. Original Fourier coefficients obtained from FFT over two 
periods with a) 32 samples, b) 64 samples, c) 128 samples, d) is the original time 
slice of SL1. 



Chapter 5 

Results of Linearized Euler 

Simulations 

In this chapter we exploit the simplifications made in the linearized Euler analysis 

to explore a wider range of flow conditions. Of particular interest is to study further 

the effect of instability wave amplitude on the acoustic field. Our approach here is 

to first demonstrate that the linearized Euler analysis is capable of reproducing the 

instability-wave compression-wave interaction behavior observed when we solved the 

full Navier-Stokes equations. Data obtained from the free-shear layer DNS is used 

to define the base flow, whereas the compression wave is introduced as a boundary 

condition to the perturbed solution field. We also consider an alternative profile for 

the incident oblique wave which simplifies acoustic measurements while retaining the 

instability-wave thresholding behavior seen previously. This alternative profile does 

not reproduce the same acoustic directivity as the compression wave. A wide range 

of instability-wave cases are conducted with this profile. Finally, fully exploiting 

the capabilities of the linearized Euler analysis, we replace the realistic instability- 

wave base flow obtained from numerical simulations with an analytic mixing-layer 

model for saturated vortices. Although numerous simplifying assumptions are made 

in applying this approximate base flow, those assumptions are not found to interfere 

with the basic generation process and permit us to study it in even greater detail. 

96 
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Grid Size Nx x Ny 301/376* x 291 
Complete Domain Size V^mtn : %max) * (ymin '• Umax) (0 : 60/75*) x (-15 : 40) 
Interior Domain Size \,xmin '• %max) X {ymin '. ymax) (9 : 50/65*) x (-12.33 : 35) 

Time Step At 0.0238948 
Filter Coeff. a'x,(Xy 2.222/2.050t, 2.050/2.222* 
Filter Period NfUter every 10 At 

Table 5.1: Parameters for numerical simulations. Exceptions for: *Cases G4 and G5; 
fStuart vortex cases (Section 5.4); *Cases CW1-3. See Tables 3.3 and 3.4 for case 
designations.   Interior domain refers to computational domain excluding boundary 
zones. 

Inflow Outflow Top Bottom 
Umax — 1.0 — — 

1> — 10"3 — — 

0~max 1.0 0.5 2.0 2.0 
N J*sponge 90/100* 100 20 20 
^sponge 9.0/10.0* 5.0 10.0 2.67 

Table 5.2: Boundary zone: Buffer zone and damjng sponge settings. * Alternate 
settings for weakly forced cases (SL3 and Dl; see Tables 5.3 and 5.4 for case desig- 
nations). 

A summary of the parameter settings used in the linearized Euler simulations 

presented in this chapter are given in Table 5.1. Boundary zone parameters are given 

in Table 5.2. Validations for these grids and filter parameters are documented in 

Appendix B. 

5.1    Compression Wave Cases: Comparison to Navier- 

Stokes Solutions 

The acoustic field produced in the Navier-Stokes solution of the instability-wave shock 

interaction problem is characterized by an apparent "leakage" phenomenon. For a 

steady shear layer, the incident shock wave is trapped by total internal reflection. 

For sufficiently high instability wave amplitude, however, the velocity field associated 

with the vortices becomes periodically arranged in such a way as to permit the wave 
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to escape. By investigating this problem within the context of a linearized Euler 

analysis, we test the hypothesis that for this kind of sound generation to occur, only 

the effect of the unsteady shear layer on the shock, rather than the details of the 

shock, is important. 

In the linearized Euler analysis, the impingement of a compression wave on a 

shear layer does result in an angular deflection of the shear layer. However, we will 

show later that this deflection is not necessary for the sound generation process we 

wish to reproduce. We will also indicate the numerical difficulty the deflection effect 

causes (as it did in the Navier-Stokes simulations), especially for the low amplitude 

instability wave base flow; we thereby motivate the use of an incident oblique Mach 

wave which does not impart an angular deflection in the shear layer. 

To understand the effect of imposing an oblique compression wave on a shear-layer 

base-flow, it is instructive to examine first a steady flow case. In this example we 

use for the base-flow a parallel supersonic shear layer. The compression wave is rep- 

resented entirely in the perturbed solution. Therefore, the perturbed solution must 

contain the all effects brought about the compression wave. The compression wave, 

imposed as a boundary condition, intersects the shear layer and must reflect as an 

expansion wave to satisfy the pressure compatibility condition there. The effect of 

the succession of compression and expansion waves is the turning of the downstream 

supersonic flow toward the shear layer. This is a global effect and requires that the 

shear layer turn parallel to this flow, as discussed in Section 2.5 and demonstrated 

for the DNS in Figure 3.8. However, in the linearized Euler representation, the pre- 

scribed base-flow shear-layer cannot adjust; consequently, the perturbation solution 

tends to compensate for this lack of turning by infusing a steady perturbation down- 

stream of the interaction site. The effect is illustrated in Figure 5.1. The magnitude 

the perturbed solution in the compensation region can approach base-flow levels at 

large distances downstream. In the unsteady case, this adjustment region will contain 

unsteady disturbances which must be accommodated by the outflow boundary condi- 

tions. To reduce the effect of the deflection, we end the interior domain immediately 

downstream of the interaction site. 
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u'/Ui 

Figure 5.1: Perturbation field of compression wave (w/S = 2.0, Ap/p<» = 0.01) inci- 
dent on steady shear layer (coordinates given as x/5 and y/5). Left, pressure; right 
streamwise velocity velocity. Deflection of shear layer is manifested in perturbation 
field, as seen in streamwise velocity. 

cases wave type Ap/Poo w/8 base flow 
CWl 
CW2 
CW3 

compression 
compression 
compression 

0.01 
0.01 
0.01 

2 
2 
2 

SL1 
SL2 
SL3 

Table 5.3: Summary of linearized Euler analysis cases reported. Base flow SLn indi- 
cate forced, free shear layers defined in Table 3.3 
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We consider compression wave cases at Ap/poo = 0.01 for base flows containing 

the forced shear layers documented in Section 3.2. We demonstrate that the linearized 

Euler analysis is an appropriate framework for investigating the screech-type source. 

In Figiiie 5.2 we show a series of visualizations of the perturbation field over one 

interaction cycle for the SLl shear layer. This figure is the analog of Figures 3.9 and 

3.16. Nearly all characteristics of the interaction process seen in the Navier-Stokes 

solutions are reproduced here. The compression wave undergoes large fluctuations. 

During its upstream excursion between the shear layer vortices, an acoustic compres- 

sion front is released. The secondary traveling waves are also evident, though they 

do not produce significant radiation due to the proximity of the exit zone. 

We also sample this field and compare a pressure trace to those obtained earlier 

in the Navier-Stokes Cases Bl and B2. We normalize the pressure trace to the 

compression wave amplitude in each case. As shown in Figure 5.3, the primary wave 

is reproduced, giving us confidence in the linearized Euler solution. As this matching 

is made for the normalized acoustic pressure, we also reinforce the previous finding 

that the acoustic field scales with the amplitude of the incident compression wave. 

As noted above the secondary acoustic features are not as prominent. 

The variation in these traces as a function of observer angle 9 is given in Figure 5.4. 

It is analogous to the Navier-Stokes Case Bl directivity plot in Figure 3.17. The 

overall trend seen in the linearized Euler result is similar to the Navier-Stokes result, 

including the contamination due to the shear layer deflection in directions approaching 

6 = 90°.. In the case of the Euler result, the characteristically steep compression is 

followed by a less rapid expansion at angles approaching the upstream direction. 

We also note the pressure-trace directional variation of Cases CW2 and CW3, in 

which base flows of reduced instability-wave amplitude are used. The trends observed 

Case CW1 are seen again in CW2 (see Figure 5.5) with a mild reduction in overall 

amplitude and some broadening in the wave-form. At 9 = 90° the pressure trace 

differs from those at other angles, being dominated by a disturbance we attribute 

to the shear layer deflection. For the most weakly forced shear-layer base-flow case, 

CW3, we are unable to recover the sound from the instability-wave compression-wave 

interaction. The dilation field is shown at two times separated by one half period in 
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Figure 5.2: Instability-wave compression-wave interaction for linearized Euler simu- 
lation. Case CW1 (SL1 shear layer base flow and Ap/p^ = 0.01 compression wave 
amplitude). Dilatation field and vorticity field, with vorticity contour increments at 
&u/(Ui/6) = 0.1. 
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— 0.10    Navier Stokes 

— 0.05    Navier Stokes 

— 0.01    Linearized Euler 

Figure 5.3: Comparison of acoustic pressure trace of linearized Euler result and 
Navier-Stokes results at r/A = 1.3, 9 = 135°. Cases B2 (Ap/p«, = 0.10), Bl 
(Ap/Poo = 0.05) and CW1 (Ap/Poo = 0.01). 

6.0 6.5 7.0 

* I■*■ oscillation 
7.5 

Figure 5.4: Case CW1: Pressure fluctuation traces normalized to compression wave 
amplitude for various observer angles $ at radius r/8 = 30. 



CHAPTER 5.   RESULTS OF LINEARIZED EULER SIMULATIONS 103 
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Figure 5.5: CW2: Pressure fluctuation traces normalized to compression wave ampli- 
tude for various observer angles 6 at radius r/5 = 30. 

Figure 5.6. The fine scale circular wave-fronts are centered at a point downstream 

of the intended interaction site and are believed to be due to the traveling wave 

phenomenon. The broader wave phenomena originate from even farther downstream 

and are more clearly recorded in the time traces shown in Figure 5.7. The positive shift 

in the trace peak with viewing angle 9 indicates that the actual interaction region is 

located downstream of the intended source. We have concluded that the performance 

of the inflow and outflow boundary conditions implemented in the presence of the 

shear layer deflection is insufficient to prevent feedback receptivity in the case of 

a weakly forced shear layer. The weakly forced shear layer is more susceptible to 

unintended instability wave growth manifested in the perturbation solution because 

its stability characteristics remain relatively unchanged in the base flow. Conversely, 

the strongly forced shear layer base flow reaches a saturated state quickly; the stability 

of its mean profile is significantly altered and less unstable at the forcing frequency 

at the interaction site. 
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Figure 5.6: Instability-wave compression-wave interaction for linearized Euler anal- 
ysis. Case CW3 (SL3 shear layer base flow and Ap/poo = 0.01 compression wave 
amplitude). Dilatation field and vorticity field, with vorticity contour increments at 
Au/(Ui/5)=0.1. 

ft 

0.05 

3.5 4.0 4.5 

*/ ■* oscillation 

5.0 

Figure 5.7: Compression wave, SL3: Pressure fluctuation traces normalized to com- 
pression wave amplitude for various observer angles 9 at radius r/S = 30. 
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5.2    G-wave 

We have demonstrated above that for the high amplitude shear layer the linearized 

Euler analysis reproduces the Navier-Stokes result for instability-wave compression- 

wave interaction. We have also encountered numerical errors in the Euler analysis 

which are not unlike those faced when extracting the acoustic near-field in the Navier- 

Stokes simulations. To summarize, the deflection of the shear layer by the compression 

wave introduces disturbances into the perturbation solution whose magnitude exceeds 

the levels for which the outflow boundary conditions were designed. In this section, we 

introduce linearized Euler simulations based on an alternative oblique wave profile, 

the Gaussian distribution, or G-wave. We show that the acoustic field produced 

by a Mach wave of this wave-form, when interacting with the forced shear layer, 

retains the characteristics of the radiation mechanism observed for the compression 

wave. Because the G-wave does not deflect the shear layer appreciably, we are able 

to measure the acoustic field with greater precision. 

The G-wave is defined with the following shape function: 

HO = Ae-M2 (5.1) 

where 4 = 1.0, b = 2.14597, and 

t= ."r ■ (5-2» 
^center (y) being the center-line of the G-wave. The function /, a Gaussian curve, is 

plotted in Figure 5.8. The parameter b assures that the width of the wave profile 

is based on the 1% of function's peak. The magnitude of the incident G-wave is 

measured in terms of its base-to-peak difference Ap, giving it the pressure distribution, 

&PG-wave(0 = /(OAp. (5.3) 
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Figure 5.8: Shape function for denning the Gaussian "G-wave". The function width 
w is based on the 1% points (shown here as £ = — 1 and f = +1). 

Supersonic small disturbance theory is then used to find fluctuations in other quan- 

tities. The G-wave is a combination compression-expansion wave. It will reflect from 

the shear layer as an expansior-compression. 

The simulations we earned out with the G-wave verify that the large-amplitude 

instability-wave interaction mechanism remains valid for incident waves which have 

non-monotone profiles. Shocks, compression waves, and expansion waves which con- 

tain a monotonic pressure distribution were already considered. Given the increased 

"oscillation" complexity of the G-wave profile compared to the compression wave, we 

increased its standard width to w = 48. Figure 5.9 is a visualization sequence over 

one oscillation cycle and is the G-wave counterpart of Figure 5.2. We emphasize that 

the visualized field in this case is pressure rather than dilatation, attesting to the im- 

proved numerical quality of the computed field. The now familiar interaction process 

involving the significant perturbation of the incident oblique wave and its apparent 

leakage through the shear layer is readily visible. 
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case Ap/Poo w/8 base flow Xsrc/8 K{x„c) 
Gl SL1 0.526 
G2 0.04 4 SL2 40 0.458 
G3 SL3 0.241 
G4 45 0.526 
G5 42 0.528 
G6 37 0.514 
G7 35 0.498 
G8 33 0.476 
G9 32 0.463 

G10 0.04 4 SL1 31 0.448 
Gil 30 0.429 
G12 29 0.408 
G13 28 0.383 
G14 21 0.356 
G15 26 0.327 
G16 25 0.298 
G17 20 0.166 

Table 5.4: Summary of linearized Euler analysis G-wave cases. Base flow SLn indicate 
forced, free shear layers defined in Table 3.3. 
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Figure 5.9: Pressure and vorticity for G-wave interacting with SL1 base flow insta- 
bility wave (Case Gl). The "reflection point" is indicated by the O- 
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The improved visualization allows us to add detail to our description of the radia- 

tion process: for part of the cycle (Figure 5.9, frames 4-7) the incident wave impinges 

upon the vortex and is totally (internally) reflected. The reflection point remains 

"attached" to the vortex. As the vortex passes, the wave advances into the relatively 

irrotational region between vortices (frame 8), but the reflection point follows the 

curved vorticity contour of the vortex through the shear layer braid. Both the inci- 

dent wave and the reflection are "dragged" through in a continuous fashion behind 

the reflection point (frames 8, 9, 1, and 2) and respond to the local velocity field by 

radiating outward in an arc. The reflection point continues outside the shear layer 

(frames 2-3), and there is no reflection point inside the shear layer until the incident 

acoustic-wave collides with the next vortex (frames 3^1). The collision causes the 

formation of a new reflection point (frame 4). The acoustic wave undergoes a severe 

refraction as it passes through the vortex (frames 3-4), focusing at some points and 

weakening at others. It extends back through the shear layer and advances upstream. 

With the encounter of the next vortex upstream (frames 5-6), a localized focusing 

again occurs. At this point (frames 6-9) the formation of the "secondary" traveling 

wave is apparent; it may be a remnant of the original acoustic wave. The traveling 

wave is an upstream-oriented, but in net, downstream traveling wave. The primary 

acoustic wave continues upstream, dragging the oblique Mach wave in the supersonic 

flow with it. The traveling wave continues downstream and arrives at the imposed 

G-wave just as it is colliding with the vortex. The traveling wave may be modified as 

it passes through the G-wave and continues downstream where it, too, interacts with 

the passing vortices to produce sound. 

We note that the degree to which the wave-form of the G-wave is preserved in the 

acoustic field differs depending on direction of radiation 9. In Figure 5.10 we show 

pressure traces for the forward quadrant at nearly one acoustic wavelength from the 

source. There is some variation in the width associated with the G-wave in the 

acoustic trace with 9. The mean-to-peak amplitude variation, shown in Figure 5.15, 

also indicates significant variation, with peak radiation at 9 =  120°. 
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Figure 5.10: Fluctuating pressure trace in upstream quadrant for Case Gl 
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Figure 5.11: Directivity in upstream quadrant for G-wave case Gl and compression- 
wave case Bl. 
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5.2.1    Instability Wave Amplitude 

The reduction of fluctuations from unwanted sources in the solution field permits us 

to take a more detailed look at the dependence of the acoustic field on instability 

wave amplitude. In the Navier-Stokes simulations, we obtained indications that the 

acoustic radiation levels fall at rates disproportionately faster than our measure of 

the instability wave amplitude (Equation 3.1). A thresholding process was suggested 

but could not be quantified for lack of numerical fidelity in the simulations at low 

instability wave amplitude. The linearized Euler simulations with compression waves 

also failed to produce reliable results at the lower instability wave forcing case (SL3). 

With the G-wave results, we are able to identify three generally distinct regions of 

behavior with regard to the dependence of acoustic radiation amplitude on instability 

wave amplitude. 

Instability Wave Amplitude: three base flows 

We begin by comparing the over-all solution field for the three shear layer base flows 

that are subject to the G-wave oblique Mach wave. In Figure 5.12 Cases Gl and G2 

both emit a field with a compact waveform that resembles the incident G-wave. This 

is seen more clearly in the fluctuation traces given in Figures 5.10 and 5.13. The 

actual spatial extent of the wave form is at least two times the G-wave width w in 

the directions sampled and exhibits a weak dependence on 9, increasing toward the 

upstream direction. Visualizations (such as Figure 5.9) indicate that the wave-form 

is most compact in the downstream direction. 

The low instability wave amplitude case (Case G3) exhibits a vastly different ra- 

diation pattern. The acoustic pressure in Figure 5.14 shows the existence of several 

sources with different phases. In the middle angles (9 = 100° to 170°), the align- 

ment of the wave-forms suggest that the source is slightly down-stream of the center 

of the sampling probe arc (x„c = 40). At transverse angles (9 < 100°), some of 

the waves clearly originate from farther downstream. Visualization indicates that 

traveling waves exist even at these low amplitudes in the supersonic flow (e.g., see 

Figure 5.17 in a somewhat different context). Although the primary source of interest 
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Figure 5.12: Pressure fluctuation normalized by G-wave pressure amplitude Ap for 
SL1 base flow (left), SL2 base flow (center), and SL3 base flow (right). Vorticity 
shown in green contours. 
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Figure 5.13: Fluctuating pressure trace in upstream quadrant for Case G2. 
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Figure 5.14: Fluctuating pressure trace in upstream quadrant for Case G3. Solid near- 
vertical lines indicate waves originating just downstream of interaction site; dashed 
lines are waves originating from farther downstream. 

is prominent, it is possible that in the absence of the outflow boundary treatments, 

the secondary sources would dominate, given the rapid growth of the shear layer. 

The secondary sources notwithstanding, the primary features of this acoustic field 

are that it ceases to resemble to the incident wave and that its mean Lo-peak am- 

plitude is significantly reduced. A comparison of the directivity of the three G-wave 

cases discussed here is given in Figure 5.15. 

The dependence of the acoustic amplitude on instability wave amplitude K (Sec- 

tion 3.2.1) also agrees with the trend first observed in the direct numerical simulations. 

In Figure 5.16 we show the acoustic amplitude for various observer angle 9. For most 

6 given, a nonlinear reduction in acoustic amplitude is observed from Case Gl to 

Case G2. The reduction from G2 to G3 is not as inconsistent with a linear scaling. 

Even so, the results from these few base flows considered are insufficient to acquire a 

detailed understanding of the acoustic dependence on instability wave amplitude. 
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Figure 5.15: Mean-to-peak pressure amplitude directivity for three shear layer base 
flows (SL1-3), interacting with the G-wave. 
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Figure 5.16: Mean-to-peak pressure amplitude as a function of instability-wave am- 
plitude K. 
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Instability Wave Amplitude: single base flow 

In an effort to elucidate the transition between high and low amplitude radiation, we 

carried out a series of simulations in which a single base flow case, SL1, was subject 

to the G-wave at a number of streamwise locations x^. The details of these cases 

are summarized in Table 5.4. The acoustic field was sampled at r/5 — 30 for a 

range of angles which is limited in the upstream direction at small XsrC. It was noted 

that at points in the shear layer where the instability wave amplitude was very low, 

the sound field was dominated by secondary sources downstream of the source of 

interest; visualization such as in Figure 5.17 indicates that the traveling waves were 

responsible. In order to isolate the source of interest, the secondary sources were 

suppressed by placing an extra rectangular sponge at x = x^ + x0gsct as detailed in 

Figure 5.18, with x0gaet = 10. 

The result of this survey is shown in Figure 5.19. We first plot the acoustic 

mean-to-peak amplitude normalized to the incident G-wave amplitude (Apf/Ap) for 

20 < Xsrc < 45. In the same figure, we align the instability wave amplitude K 

and components Ku and Kv for the same region (cf. Section 3.2.1). We divide the 

acoustic amplitude curves into regions of "Low Amplitude", "Exponential", and "Sat- 

uration" to distinguish among different instability wave amplitude dependencies, as 

will b^. shown below. In the Low Amplitude region the acoustic amplitude is low; 

it ec: responds approximately to the region in which the instability wave still grows 

exponentially in accordance with linear theory. Evidence in Section 5.4 suggests that 

the acoustic amplitude varies directly with instability wave amplitude here. In the 

Exponential region, the acoustic amplitude rises rapidly with source position. Mean- 

while the instability wave growth rate diminishes. Finally in the Saturated region, 

the acoustic amplitude peaks locally at x^ = 32, decays slightly, then continues to 

increase with x^. The local peak coincides approximately with the inflection point 

in Ku. The mean vorticity thickness of the SL1 shear layer (Figure 3.7) also reaches a 

local maximum here due to the initial roll-over of the shear layer vortex. The acous- 

tic amplitude is found to reach its overall maximum at some 9 in the vicinity of the 

peaks in K and Ku. The x^c at which this peak is reached is smaller for radiation 
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Figure 5.17: Raw pressure perturbation field fJ/pU? for intended source location 
Xsrc/b = 20 before application of extra sponge. Visualization indicates presence of 
numerous "traveling" waves in supersonic stream, downstream of Mach wave reflec- 
tion. Dominant source is deduced from center of concentric wave fronts in acoustic 
field. Location of extra sponge is indicated by the dashed line (see Figure 5.18). 
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Source 

Lower boundary 

Figure 5.18: Extra sponge function detail. Sponge function is <rextra = 
max(o-extra) [1 + tanh(f/2)] /2 along distance from sponge edge to 56 into its interior 
in regions A, B, C, and D. In region E, o^ = max^). xoffset = 105 

directions approaching the upstream direction. The evolution of the directivity over 

the range of source locations is shown in Figure 5.20. 

The dependence of acoustic amplitude on instability wave amplitude K is shown 

in Figure 5.21. The Exponential region is so named to indicate the approximately 

exponential dependence of acoustic amplitude with K. The acoustic amplitude grows 

by nearly an order of magnitude over a region Li which K increases by only 50%. 

The dependence of acoustic amplitude on Kv ( Figure 5.23) also appears strongly 

exponential, whereas the dependence on Ku is clearly not (Figure 5.22). The near- 

multivalued tendency exhibited in Figure 5.22 suggests that in the Exponential region, 

Kv is the more relevant parameter influencing acoustic amplitude. 

Ultimately, it is apparent that the instability wave amplitude cannot be tied 

uniquely to a single acoustic amplitude for the entire range of instability wave ampli- 

tude. In the Saturation region, i.e., in region of leveling or diminishing K, Ku and 

Kv, acoustic amplitude continues to increase at some angles 0. 

We note that the structure of the instability wave has changed from the small 

amplitude wave described in linear stability theory to a nonlinear vortex by the time 
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Figure 5.19: Top: Radiated acoustic pressure amplitude as a function of source lo- 
cation. Bottom: Instability wave amplitude for same source locations in SLl shear 
layer. 
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Figure 5.20: Radiated acoustic pressure amplitude versus observer angle 9 about 
source. Acoustic amplitude is taken as mean-to-peak amplitude A// normalized by 
G-wave amplitude Ap. Sampled at r/8 — 30. 
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Figure 5.21: Radiated acoustic pressure amplitude versus instability wave amplitude 
K. Acoustic amplitude is taken as mean-to-peak amplitude Apf normalized by G- 
wave amplitude Ap. Sampled at r/5 = 30 and 6 = 90°. Dashed lines divide curve 
into three regions of distinct behavior: "Low Amplitude" where radiation efficiency 
is low; "Exponential" where radiation levels grow exponentially with instability wave 
amplitude; and "Saturation", where radiation growth diminishes. 
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Figure 5.22: Radiated acoustic pressure amplitude as a function of instability wave 
amplitude component Ku. 
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Figure 5.23: Radiated acoustic pressure amplitude as a function of instability wave 
amplitude component Kv. 
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it reaches the Saturation region. Hence parameters necessary to predict acoustic am- 

plitude, and especially directivity, are likely to become more numerous and complex. 

The plots given in Figures 5.21, 5.22, and 5.23 stress this. 

Within the Exponential region, the acoustic wave form undergoes a fundamental 

transition. As shown in Figure 5.24, the trace retains the shape of the incident G-wave 

at the upper extremes of the region (xsrC « 33), and throughout the entirety of the 

Saturation region. However, for decreasing x^ or K, the Gaussian bump is absorbed 

into a more sinusoidal wave-form. We note that the low end of the exponential 

region is approximately the location at which the shear layer vortex begins to roll up. 

We noted earlier that the upper end of the exponential region (the local maximum 

in acoustic radiation) corresponds to the point at which the vortex experiences the 

initial "roll-over". In animated visualizations not presented here, we observe that 

part of the incident wave is transmitted while most of it is reflected back into the 

supersonic stream. Based on these observations the sound generation mechanism 

appears to be that of "leakage" or scattering of the incident wave at the upper end of 

the Exponential region—hence the compact wave form—whereas an entirely different 

mechanism is clearly dominant at the lower end. The transition process between 

these two mechanisms may be intimately related to the exponential growth in acoustic 

amplitude. 

The evolution in wave form with instability wave amplitude observed above has 

some important ramifications with respect to previous interpretations of the screech 

sound field. As discussed in Section 1.2.2, the sound field of high aspect ratio rectan- 

gular screeching jets, which are nearly two-dimensional, has been observed to consist 

of a single, dominant "feedback shock". The reasons for the feedback shock being of 

compact wave form are not discussed in any of the studies in which it was observed. 

It is well known that the flapping mode of the rectangular screeching jet can be more 

intense than the flapping modes of the round jet [18]. It is proposed that the com- 

pact waveform of the feedback shock is due to the periodic leakage of the shock cell 

structure. In the flapping jet the instability waves are nearly saturated vortices. We 

have shown that the acoustic waves radiating from regions containing these high am- 

plitude instability waves contain compact wave forms (resembling the incident wave); 
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Figure 5.24: Acoustic pressure traces normalized to respective mean-to-peak ampli- 
tude (see Figure 5.19). Sampled at r/6 = 30 and 9 = 90°. identified in Figure 5.21. 
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we have also shown that at lower instability wave amplitude, the sound emitted is 

more sinusoidal and of disproportionately lower amplitude. Hence, in the rectangular 

screeching jet, we would expect the rapid growth of the shear layer to favor the dom- 

infiiiee of very few sources. On the other hand, in round jets, where the instability 

wc/e growth comparatively limited, the sources are of similar strength over the shock 

cell structure. The lower amplitude results in a sound field made up of the sinusoidal 

wave form. Together with the phased array property of the multiple sources, the 

uniformity in source strength and sinusoidal waveform lead to interference pattern 

responsible for the unique directivity of screech common reported. 

5.3 Reduced mode representation of base flow 

The temporal decomposition of the base flow as Fourier modes allowed us to study 

the sensitivity of high amplitude sound generation mechanism to the precise descrip- 

tion of the shear layer. In particular, we compared the sound fields acquired from the 

interaction of the compression wave and a DNS base flow consisting of 1) its funda- 

mental mode and 2) fundamental mode plus first harmonic, to the sound field of a 

fully represented DNS base flow. Visualizations such as in Figure 5.25, in which the 

base flow contains only the fundamental Fourier mode, clearly indicate that the same 

mecLanism of sound generation is in effect, despite the highly modified base flow. The 

directivity is largely accounted for with the fundamental, as shown, in Figure 5.26. 

The addition of the first harmonic mode indicates eventual convergence toward the 

full representation. These results indicate that the fundamental sound generation 

mechanism can be recovered in a simplified representation of the base flow. This 

finding is exploited in the following section. 

5.4 Stuart Vortex 

The results in the previous section suggest that the radiation process is fundamentally 

that of scattering of the incident wave from instability waves of sufficiently high 

amplitude.   The questions which remain are:   What features or properties of the 
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Figure 5 25-  Visualization of reduced mode base flow for compression wave case. 
Nk = 1, SL1. See frames 1 and 5 of Figure 5.2 for the Nk = 31 counterpart. 
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Figure 5.26: Reduced mode base flow for compression wave. Nk indicates the num- 
ber of fluctuating modes retained; mean is considered k = 0. Nk = 31 represents 

maximum number of modes in data set. 
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instability wave field produces the windowing behavior? What explains the transition 

from the low amplitude behavior to the high amplitude, and finally, the saturated 

behavior? 

As an alternative to an instability wave field based on numerical simulations, 

we consider instead one based on Stuart vortices [60]. The Stuart vortex mixing 

layer is a two-dimensional solution of the nonlinear incompressible Euler equations. 

The solution represents a periodic array of vortices convected in the mixing layer 

and for small amplitude becomes identical to the neutral wave of linearized stability 

theory. The vortex model has been the subject of an investigation into the two- and 

three-dimensional stability properites of coherent shear layers (Peirrehumbert and 

Widnall [35]). No compressible counterpart of this model is known. 

In this section, we use the velocity field given by the Stuart vortex model to 

represent the instability wave field in the linearized Euler simulations. While this field 

is clearly not a solution to the compressible Euler equations, especially for large Mach 

number, it does represent a vortex laden shear flow. This flow is particularly useful 

for examining the effect of vorticity clumping. Given the degree of approximation, 

for simplicity we ignore thermodynamic variations. 

5.4.1    Velocity Field 

The velocity field is given as 

Csinhü 
u   =   Uc H - =— (5.4) 

C cosh y + A cos(x - Uci) 

T~r A sin(x - Uci) ,    x v   =   UCA - ——=— (5.5) 
Ccosh(y) + Acos(x - Uct) 

where the tilde ~ indicates that the length scales have been normalized to streamwise 

instability wave number and the velocity scales have been normalized to half the 

velocity difference across the mixing layer. Uc is the convection velocity of the vortices. 

The relationship between the amplitude parameters is 

A = VC2-! (5.6) 
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Setting A = 0 results in a parallel shear layer with a tanh y profile. The A = 0 profile 

is wider than the shear layer which would realistically give rise to saturated vortices 

of the size, say, A = 1. A discussion of mean vorticity thickness is given below in 

Section 5.4.4. 

We renormalize the velocity fields in Equations 5.5 and 5.5 to scales relevant to the 

our investigation by matching oscillation frequency OJ and velocity difference U2-U\. 

Ui is taken as the velocity below the shear layer, and U2 the velocity above. To rescale 

the velocities, we must take 

Ü   =   2u/{U2-Ux) (5.7) 

v   =   2v/(U2-U1) (5.8) 

Uc   =   UC/{U2-UX) (5.9) 

where for compatibility with the far fields, the convective velocity of the vortices must 

be the average of the velocities in the two streams: 

tfc = (tf2 + C/i)/2 (5.10) 

The length scales are rescaled according to the streamwise wave number which main- 

tains frequency compatibility for waves traveling at Uc. Therefore ,vave number 

a = u>/Uc, and the coordinates are rescaled using 

x = ax y = a(y-y0). (5.11) 

Time is rescaled with 

Uct = Lut. (5.12) 

If we define b = (U2- Ui)/2, rj = a(y - yo), £ = a(x - Uct), and continue to require 

Uc = (U2 + Ui)/2, the renormalized velocity field simplifies to 

,r     , Csinhn 
u = u° + bn—Trri—c (5-!3) C cosh T) + A cos f v      ' 
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Figure 5.27: Contours of instantaneous vorticity for Stuart vortex mixing layer. Con- 
tour interval A£ = Cpeofc/10- 

Asinf 
Ccosh77 + j4cos£ 

5.4.2    Vorticity 

The vorticity field is 

_   dv     du _d£,dv     drj du 
dx     dy     dxd£     dydrj 

=   ab 
Acos^ — Ccoshrj     A2 sin2 £ + C2 sinh2 77 
C cosh r? + A COST;      (C cosh rj + A cos £)2 

ab 

(5.14) 

(5.15) 

(5.16) 
(Acosf + Ccoshr?)2 

In Figure 5.27 we plot contours of instantaneous vorticity for several values of vortex 



CHAPTER 5.   RESULTS OF LINEARIZED EULER SIMULATIONS 130 

amplitude A. With increasing A, the vorticity is concentrated about the vortex cores; 

the vortices themselves become relatively compact. 

5,4.3    Instability Wave Amplitude 

The instability wave amplitude is denned as before in Equation 3.1. 5, the initial 

vorticity thickness of the DNS shear layer, is taken as the reference length to make 

comparisons possible. It does not correspond to the vorticity thickness of the Stuart 

vortex mixing layer. The fluctuation velocities v! and v' taken with respect to mean 

shear layer, 

— 1   f2*   /    A\j/-     TT     i       Csinh77 

V   =   hrviv>0dZ = °> (5-!8) 
are 

u 
_     , Csinhn Csinhn 

=   u — u = b— j h 
CcoshTf + AcosS       y/CPanh2ri + l 

4sinf 
v    =   v — v 

C cosh 77+ .,4 cos £ 

(5.19) 

(5.20) 

Note the density is taken as constant. The instability wave amplitude K, as denned 

by Equation 3.1, is plotted in Figure 5.28 as a function of Stuart vortex amplitude A. 

We also plot the components Ku and Kv, which are denned by equation 3.3. Curve 

fits to these functions are given by 

K{A) = 0.9692224- 0.0765651 A2 - 0.18007043+ 0.063524444 (5.21) 

KU(A) = 0.5042034 - 0.02187204* - 0.081231943 + 0.026110744 (5.22) 

KV{A)   =   0.7986994 -0.072192242 - 0.15610543+ 0.056328844     (5.23) 
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Figure 5.28: Instability wave amplitude K (Equation 3.1) and its components, Ku and 
Kv (Equation 3.3), for the Stuart vortex mixing layer. A is the amplitude coefficient. 

5.4.4    Mean Vorticity Thickness 

The mean vorticity thickness of the Stuart mixing layer based on v, given in Equa- 

tion 5.18 is 

^Stuart     — 
\Ui-Ui\ 

\dü/dy\maa 

{aby/W+ll 

\Ul+U2\ 
ujy/A2 + 1 

(5.24) 

(5.25) 

(5.26) 

For the cases we consider, Ux = 1, U2 = 0, and u> = 0.1643, giving SStuart       /S = 
A=0' 

6.085. For A > 0 the mean vorticity thickness decreases as shown in Figure 5.29. 

5.4.5    Comparison to previous results 

We begin by comparing the acoustic field due to the interaction of the G-wave with 

the Stuart vortex base flow with the acoustic field due to interaction with the SL1 

forced shear layer base flow. We consider matching instability amplitude parameters 
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Figure 5.29: Vorticity thickness of Stuart vortex compared to initial vorticity thickness 
used in SL1 base flow for u = 0.164345. 

SL1 Case %src Matching i.w. Amp A(K) or A(KV) Stuart Case A 
Gl 
G10 

40 
31 

K = 0.526 
K = 0.448 

0.603 
0.501 

0.6 
0.5 

G8 
Gil 

33 
31 

Kv = 0.361 
Kv = 0.349 

0.493 
0.405 

0.5 
0.4 

Table 5.5: Parameters based on instability wave amplitude for matching Stuart base 
flow results to those obtained with the DNS baso flow. 

of K and Kv between the base flow cases. The consideration of Kv is motivated by 

the observation (presented at the end of the next section) that the vertical velocity 

component is responsible for most of the radiation. The matched cases are outlined 

in Table 5.5. 

At the source location x„cjS = 40 in the SL1 shear layer, K = 0.526. Matching 

this parameter in the Stuart vortex field requires that A « 0.6. Visualization obtained 

from this case (Figure 5.30) indicates that despite its simplifications, the Stuart model 

retains the properties necessary to produce the same kind of interaction and sound 

field seen in the DNS shear layers. The vorticity.in the Stuart vortex field is more 

concentrated, though peak levels are comparable to the SL1 vortices. 
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Figure 5.30: Visualization of interaction of G-wave with Stuart vortex base flow for 
A = 0.6. Vorticity contour increment is A£/(Ui/6) = 0.1. 

Despite these similarities, we find that neither K nor Kv serve as a reliable pa- 

rameter for matching instability waves and acoustic radiation levels among different 

base flows. In Figure 5.31 we compare the directivity of the acoustic field in a Stuart 

vortex case (A = 0.6 and A = 0.5) to their DNS base flow counterparts, matched 

based on K. For A = 0.6, the magnitude and peak directivity are comparable and 

would suggest that K is a good indicator of acoustic emission poter'.ial. However, 

in the acoustic results based on a matching at A = 0.5, there is a large difference 

in both peak directivity and overall magnitude. Kv also proves to be an unreliable 

predictor for acoustic amplitude. For the results presented in Figure 5.32 we match 

the base flows according to Kv. Large quantitative differences in the resultant fields 

are observed for both matching points (A = 0.5 and A = 0.4). 

5.4.6    Variation with Stuart vortex amplitude 

The analytic description of the Stuart vortex mixing layer enables us to investigate the 

instability-wave compression-wave interaction process and resultant acoustic radiation 

for a wide range of amplitude settings. We continue to use the G-wave to minimize 
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Figure 5.31: Acoustic directivity for base flow with matched K: SL1 Case Gl (x„c = 
40) vs. Stuart vortex A = 0.6, and SL1 Case G10 {x^ = 30 vs. Stuart vortex 
A = 0.5). 
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Figure 5.32: Acoustic directivity for base flow with matched Kv: SL1 Case Gl (x„c = 
33) vs. Stuart vortex A = 0.5, and SL1 Case G10 (x^ = 30 vs. Stuart vortex 
A = 0.4). 
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deflection effects. The Stuart mixing layer amplitude parameter A is varied from 0.03 

to 1.5. 

The pressure field visualizations shown Figure 5.33 for several A indicate that there 

is a fundamental change in the sound generation mechanism with A. At A — 0.05, 

the Stuart mixing layer is only weakly unsteady. The incident G-wave undergoes only 

small changes in position and its reflection is well denned. The resultant sound pro- 

duced is a small fraction of the incident wave amplitude, and its waveform is broad. 

With increased A, the vorticity in the mixing layer becomes more concentrated. Os- 

cillations experienced by the incident wave increase, and the reflection is less well 

defined. At the same time, the acoustic amplitude rises, and the wave-form becomes 

more compact. By A = 0.8, the vortices are essentially discrete entities, causing the 

incident G-wave to experience large oscillations in position. The leakage mechanism 

as a means of producing the sound is apparent. As such the waveform of the sound 

field is very, compact, the acoustic amplitude having risen still further. For very high 

A, the mixing layer vortices are tightly concentrated, and the G-wave reflection is es- 

sentially nonexistent in the steady sense. However, the acoustic field does not change 

appreciably from the A = 0.8 case, other than to exhibit stronger reflections from 

^he interaction of the acoustic wave with upstream vortices. It is clear that acoustic 

saturation has occurred. 

To explore the transition in the sound field in more depth, we examine the de- 

pendence of the amplitude, directivity, and wave form of the sound field on A. In 

Figures 5.34 and 5.35 we plot the acoustic amplitude for selected angles against A. 

As in the DNS base flow cases, we identify three regions of acoustic behavior: Linear 

(instead of "Low Amplitude"), Exponential, and Saturation. The logarithmic axes in 

Figure 5.34 are used to show that the acoustic amplitude varies linearly with A. The 

acoustic amplitude rises roughly exponentially with A until approximately A = 0.7, 

above which the acoustic field saturates and becomes comparatively invariant with 

A. 

In Figure 5.36 we plot the directivity of the acoustic field. The direction of peak 

radiation shifts from upstream (approximately 130°) in the linear and exponential 

regions, to downstream (to angles no greater than 9 = 90°) after saturation. 
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Figure 5.33:  Visualization of perturbation pressure field and base flow vorticity at 
various Stuart vortex amplitude A. 
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Figure 5.34: Dependence of acoustic amplitude on amplitude coefficient A. Log-Log 
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Figure 5.35: Dependence of acoustic amplitude on amplitude coefficient A 
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Figure 5.36: Acoustic directivity for interaction between Stuart vortex mixing layer 
and the G-wave for several values of amplitude coefficient A. Sampled at r/S=30. 
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Figure 5.37: Comparison of traces at various values of vortex amplitude A. 

The saturation phenomenon is also manifested in terms of wave form. Figure 5.37 

illustrates how the waveform is essentially sinusoidal for low A, then acquires the 

G-wave pulse as A increases through the Exponential region (0.2 < A < 0.7) and 

maintains that wave-form in the Saturation region. Additional small disturbances 

appear at high A; these are identified as reflections arising from the radiated acoustic 

wave interacting with other freely propagating vortices. 

Finally, we consider the individual suppression of fluctuation velocities v! and v' 

in the Stuart mixing layer model to obtain an indication of the relative importance 

of each component in the "leakage" process. Setting A = 1.0 to ensure saturated 

radiation conditions under normal circumstances, we set v! = 0 while retaining v'^ 0 

and then v' = 0 with v! ± 0. We compare the results to the unsuppressed case for 

A = 1.0. As shown in the directivity plots in Figure 5.38, the vertical component of 

velocity alone actually enhances the radiation process at upstream 0. The acoustic 
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Figure 5.38: Comparison of directivity in which fluctuation velocity components v! 
and v' are successively suppressed. 

field due to the streamwise velocity fluctuation v! alone, however, falls nearly an order 

of magnitude short at transverse angles 6. 

5 4.7    Discussion of Stuart vortex results 

In this section we considered the interaction of the G-wave with the Stuart vortex 

mixing layer. First, we established that despite the simplifications assumed in using 

the vortex model for a shear layer base flow, the basic mechanism for acoustic ra- 

diation at high amplitude is retained. For sufficiently high vortex amplitude A, the 

"leakage" mechanism for sound generation is observed. Only the details in overall 

acoustic amplitude and directivity are somewhat modified. 

As with the base flow cases based on the Navier-Stokes shear layer SL1, we iden- 

tified three regions of distinct behavior of the acoustic field with respect to a measure 

of instability wave amplitude. In Low Amplitude, or more precisely "Linear", region, 

we found that the acoustic amplitude varies directly with Stuart vortex amplitude 

A. In this region, the acoustic wave-form is sinusoidal. In the Exponential region 

(0.1 ~ 0.2 < A < 0.7), the wave-form undergoes a transition from sinusoidal to 
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one resembling the incident wave-form. The acoustic amplitude experiences expo- 

nential growth with A. In the saturation region (A > 0.7), the incident wave-form 

is sustained in the acoustic field without substantial change in acoustic amplitude. 

However, the directivity shifts from upstream (0 = 130°) to downstream at high A. 

It is clear that over the range of vortex amplitude A, the mechanism for sound 

generation experiences a transition. The sinusoidal wave-form in the acoustic field 

and linear dependence on A in the Linear region suggest that the mechanism is a 

simple linear interaction between the incident wave and the instability wave (e.g., as 

conceived by Tarn [62]). In the Saturation region, the preservation of the incident 

wave-form in the acoustic field at high A supports the notion that the incident wave 

is periodically "leaked" through the shear layer through a scattering, or unsteady 

refraction, mechanism. The acoustic amplitude levels in the Saturation region are one 

to two orders of magnitude higher than in the Linear region. The acoustic amplitude 

rises exponentially with A between the two regions. If one assumes that in this 

Exponential region the scattering mechanism overtakes the linear mechanism with 

increasing A, then one may conclude that the scattering mechanism is in a sense a 

fundamentally more efficient method for sound generation. 

Finally, one must ask how representative of the realistic (Navier-Stokes) shear 

layer is the Stuart vortex model. While generally similar behavior is observed between 

the acoustic fields generated using, respectively, the DNS and Stuart base flows, the 

details of the mixing layers themselves contain some important differences. First with 

increasing instability wave amplitude K, the vorticity thickness of the DNS shear layer 

increases. However, in the case of the Stuart vortex, vorticity thickness decreases 

with vortex amplitude A. Furthermore the vortices in the DNS shear layer saturate, 

i.e., they reach a maximum amplitude and have finite cores. In the Stuart model 

we can produce arbitrarily concentrated vortices by continuing to raise A beyond 

levels one would realistically expect to observe in the shear layer. The relationship 

between A and K is not linear at higher A, further skewing a direct comparison. 

Nevertheless, despite these differences, the great similarities observed in the overall 

acoustic radiation behavior give us confidence that the Stuart vortex results are valid 

enough for obtaining useful insight into the screech generation mechanism. 
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5.5    Summary of Linearized Euler Simulations 

In this chapter we have shown that simulations based on the linearized Euler equations 

is an appropriate context for investigating the interaction of a compression wave and 

a realistic forced shear layer and the resultant acoustic field. The success of this 

approach indicates that the interaction process itself is largely the effect of shear 

layer on the incident wave and does not intrinsically depend on the modification of 

the shear layer by the incident wave. We were able to reproduce the "leakage" effect 

observed previously in the Navier-Stokes equations. 

With the introduction of the G-wave, we were able to substantially increase the 

fidelity of our acoustic measurements while retaining similar interaction and radiation 

behavior. We conducted a detailed survey of the dependence of the acoustic field on 

the instability wave amplitude and were able to identify three distinct regions of 

behavior: 1) Low Amplitude, 2) Exponential, and 3) Saturation. 

We investigated two simplifications to the base flow, first the modal reduction of 

its temporal Fourier representation, and then the introduction of the Stuart vortex 

mixing layer model. The use of the mean plus a single unsteady mode for the base flow 

was found sufficient to produce the "leakage" effect. Additional modes were found 

only to refine the directionality. The use of the Stuart model enabled us to explore 

the acoustic saturation process in greater det^l. With the Stuart model we were able 

to reproduce the Exponential and Saturation regions found for the more realistic base 

flow, and found strong evidence that the behavior of the Low Amplitude region is 

indeed linear. We established that an absolute maximum radiation level exists. 



Chapter 6 

Geometrical Acoustics 

We have used numerical simulations with varying degrees of idealization to refine 

our understanding of the sound generation process in a screech-type source. The 

generation process was studied over a range of instability wave and compression wave 

amplitudes. A thresholding and saturation process was observed whereby the radiated 

sound levels grow exponentially with instability wave amplitude up to a point. The 

acoustic field was found to scale with the amplitude of the incident compression wave. 

In the process of modeling we simplify the description of a physical phenomenon 

by stripping away the less important aspects and are left with the fundamental mech- 

anism responsible for its behavior. We have already taken steps t3ward a model of 

the instability-wave shock interaction. The first step was to replace the shock with 

a weak compression wave. With this we were able to regard the incident wave am- 

plitude as a small parameter, where in the next step we decoupled it from the large 

amplitude shear layer disturbances in the linearized Euler simulations. A change of 

description of the compression wave to the G-wave helped reinforce the notion that 

processes such as thresholding can be regarded more in the light of acoustic scatter- 

ing; the specifics of the incident wave are not important. A gross simplification of 

the shear layer through the use of the velocity field of Stuart vortex solution suggests 

that there is something intrinsic to a vortex laden mixing layer which permits the 

periodic "leakage" we observe. 

143 
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In this chapter we explore a different approach to describing the instability-wave 

shock interaction and sound radiation phenomenon: geometrical acoustics. In geo- 

metrical acoustics, we build on the notion that the large amplitude, vortical nature of 

the flow field is important for explaining the sound generation as a scattering process. 

The shock is thereby modeled as a standing acoustic wave which travels through an 

unsteady flow field. 

6.1    Methodology 

We make use of classical geometrical acoustics for a time- and space-varying medium. 

The assumptions one makes in deriving the basic equations of geometrical acoustics 

are restrictive. The first assumption is that the length scales associated with varia- 

tions in the base flow are large compared to the acoustic wavelength. This is known 

as the high wave number limit. This restriction is of practical importance when com- 

puting the amplitude of the acoustic field; greater uniformity in the base flow reduces 

the likelihood of caustics, that is, mathematical singularities caused by wave-front 

focusing. In our flow the length-scales associated with the instability waves are in 

fact comparable to the overall acoustic wavelength. However, the overall acoustic 

wavelength may not be the most relevant length scale. Instead, the length scales 

associated with the details of the shock, which are much smaller than the acoustic 

wavelength, may be more important. Still, wave-front focusing does occur, even in 

the steady case, and acoustic amplitude is not considered in the analysis of this chap- 

ter. A second assumption in geometrical acoustics is that the time scales associated 

with the unsteadiness of the base flow are long compared to the acoustic time scales. 

In our flow, this assumption is clearly violated as the convection Mach number of 

the instability waves is approximately 0.75. Nevertheless, it will be shown that the 

geometrical acoustics approach does yield compelling qualitative results. 
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6.1.1    Formulation of governing equations 

The eikonal equation 

^ + v-ve = -c|ve| (6.i) 

forms the basis of computing ray trajectories and wave fronts in geometrical acoustics. 

0 is the phase function of the acoustic wave, and its gradient V6 is parallel to the 

wave-front normal, n. v is the velocity field of the base flow and c is the base flow 

speed of sound. In general, both v and c vary in time and space. 

A detailed derivation of the eikonal equation is given in Ostashev [31]. We give 

a brief summary of the derivation here. The eikonal equation arises from taking the 

Euler equations linearized about an unsteady mean flow and recasting the fluctuating 

quantities as harmonic functions in space and time: 

ip', u'i, p', s') = (p, Hi, P, s) exp(ifco6) (6.2) 

Here, fco is the reference value of the wave number and G(R, t) is the phase function 

(R being the position vector). A substitution of Equation 6.2 into the linearized 

Euler equations leaves a portion of the equations different from the remaining terms 

by factors of fco/ and fcoCo/fi, where / and f2 are the characteristic base flow length 

_and frequency scales. In the high frequency limit we can assume that fco/ » 1 

and fcoCo/fi >• 1, allowing us to consider solutions in terms of the small parameters 

1/fcoZ and Q/(fcoCo). Collecting terms according to "Debye series" expansions, based 

on these parameters, of the harmonic function coefficients, a recurrence relationship 

between coefficients of order fc£ and fcj-1 can be found. For equations of the order fcg, 

coefficients of order fco-1 do not exist and the right hand side of the equations vanish. 

The resulting equations form a linear system in the lowest order coefficients, which 

is homogeneous. For solutions to be nontrivial, the determinant of the coefficient 

matrix of this system must be zero, a condition guaranteed by the eikonal equation, 

Equation 6.1. 
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6.1.2    Solution of the governing equation 

The eikonal equation is solved in a similarity coordinate following the sound wave. 

Such a strategy involves defining a Hamiltonian function H so that the differential 

equation can be written       **" 

H(R,t,e,b,q) = 0 (6.3) 

where b = VB and q = Qt = dQ/dt. The Hamiltonian function of choice (e.g., see 

Zauderer [81], p. 82) is 

H[R,t,e,b,q] = e-e0-(R-Ro)-b-q(b)(t-tQ) (6.4) 

If we rewrite eikonal equation as 

F[R,*,e,b,g] = 
30 
dt + V-V6 c2(V0)2 = 0 

then we can define the five characteristic equations:. 

(6.5) 

dR 
~d7 

=   Fb 

dt 

~dr 
=   Fq 

dS 
dr 

=   b-Fh + qFq 

db 
~d? 

=   -FR-Feb 

dq 
dr 

=   -Ft-Feq 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

where r is the characteristic variable. Evaluating the right hand side of these equa- 

tions and renormalizing the coordinates by dt/dr, time t becomes the characteristic 

variable, and we obtain our governing characteristic equations. 

■ dR c*b 
R   =   — = v - 

at q + v • b 

at 

(6.11) 

(6.12) 
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• db      (b-b)Vc2      „   „, ,      x b   =   ä = k^)-{h-V)V (6-13) 

= ^ = _(b1b)_^_    av 
g d*      2fo + vb)öt of {    V 

(6.15) 

where, again, 9 = |f and b = V0. Note that g = dQ/dt ± dB/dt = 0. 

The solution to these equations represent the ray trajectories of acoustic waves. 

R is the acoustic propagation velocity along a ray. Along the characteristic moving 

at R, phase 0 is constant, leaving 6 = 0. 

6.1.3    Initial conditions 

Specifying initial conditions for the governing equations requires one to take into 

account the orientation of the wave fronts and modify the initial ray trajectory ac- 

cording to the local flow conditions. We specify initial conditions for ray position R; 

initial phase 0 is irrelevant, since 0 does not change along characteristics. Initial q 

and b are specified assuming the form of 0 is 

e(R,t) = k(R,t)-R-ut (6.16) 

where k is the (local) acoustic wave number vector and u is the (local) frequency, 

which is fixed provided that the source is stationary. In our implementation, the 

initial point of the ray is fixed to the laboratory frame and located uniform flow. As 

result k = ko is constant there and 

bo = V0|t=o = k0 (6.17) 

since V • R = 1. Similarly, 
ae 

= -CJO (6.18) 
t=o 
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The relationship between the initial frequency u>o and the wave number ko is obtained 

through the dispersion relation 

uj = koc + ko-v (6.19) 

Solving for fco, we obtain 

*°= JUT M (6-2°) Mn • m +1 v      ' 

where m = v/|v|, M = |v|/c, and n = ko/fco is the wave-front normal. For a uni- 

form horizontal flow of Mach number Mi, the initial condition for the wave vector b 

becomes 

b0 = ko = kon = ———  [xi cos 9 + x2 sin 9] (6.21) 
1 -I- Mi cos 9 v      ' 

where 9 is the orientation of the wave-front normal n, as measured from the down- 

stream direction. The relative values of fco and u>, rather than the absolute values, 

are important. Equation 6.21 permits us to specify initial values of &o and q0 in a 

uniform flow to form rays in any direction 9. 

We note that when Mi > 1, there is an apparent singularity in the above expres- 

sion for Mi cos0 = — 1. Waves satisfying this condition are oriented precisely at the 

Mach angle /i = sin-1 (1/Mi) and are therefore standing waves. However, because 

the waves are stationary, the frequency must be zero. Hence, for these conditions we 

require that the wave number be finite (but arbitrary) and of known orientation; i.e., 

we specify that 

9o   =   -w = 0 (6.22) 

bo   =   Xicos0 + x2sin0^ 0 (6.23) 

This is the initial condition we use to represent the oblique shock in geometric acous- 

tics. 
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6.1.4    Numerical solution of the eikonal equation 

We now have a first order nonlinear system of differential equations (five equations for 

two-dimensional flow and seven equations for three-dimensional flow). The variables 

consist of two distinct types: the solution variables R, b, and q; and the base flow 

variables v and c. The base flow variables are specified from an existing precomputed 

data set (e.g., from a simulation or model flow). In practice, we pre-compute v, c2, 

Vv, Vc2, dv/dt, and dc*/dt. 

The goal is to generate the ray paths R for a large series of starting points on the 

same wave front. We advance the solution to some end condition (such as maximum 

time or time steps) for each ray path, and store the positions R. Let index m 

denote the ray, and index n denote the time step. Thus, we acquire an array of 

coordinates R,n,„. Hm,n for fixed m and varying n represents the ray m. As At is in 

general variable for maximum integration efficiency, the wave fronts are obtained by 

interpolating in time t(m, n) the ray position data. 

We establish the initial conditions for each ray m as noted previously: 

Rm,0    —    Rm,0 (6.24) 

t>m,0    =    ko = fcollo (6.25) 

f             0              ö = cos-1(-l/M1) 
9m,0    =     < 

I — ko(c + no • v)           otherwise 
(6.26) 

where no is the unit normal to the initial wave front. For a stationary source, u> will 

remain constant across the initial wave-front. 

The governing equations 6.11 through 6.14 have the form Q = /(Q„,t„). We 

integrate these equations using the Richardson extrapolation form of the fourth order 

Runge-Kutta method (as taken from [43]). The variable time step At afforded by 

this method assures an accurate solution while maintaining computational efficiency. 
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6.2    Steady flow examples 

In the following we demonstrate the ray tracing code on two steady flow examples 

in preparation for representing the instability wave shock interaction problem with 

geometric acoustics. Both involve a horizontally oriented, steady, parallel shear layer 

with a hyperbolic tangent profile: 

u\   =   U\ H  l + tanh'y"Ito 
(6.27) 

5/2 
U2   =   0 (6.28) 

where Ui = 1 and Uz = 0 are the asymptotic velocities below and above the shear 

layer, respectively; yo is the shear layer center-line; and S is the vorticity thickness. 

For these examples, we have ignored variation in the speed of sound c. We have 

normalized the vertical coordinate y by the shear layer thickness S and taken yo = 0. 

In the first example, we place a point source in a supersonic flow (M = 1.2) 

at y/8 = —2. The Figure 6.1 we show the ray trajectories (in red) and wave fronts 

(black). By point source, we mean that the wave initial wave front forms a circle. The 

ray trajectories themselves are confined within a Mach cone (only the upper half of 

which we computed). Some ray trajectories pass into the shear layer, and then return 

to the lower stream; such rays experience «,otal internal reflection. Some of these 

create Mach wave traces that travel obliquely to the shear layer and are completely 

analogous to those observed in the simulations. The overall wavefront development 

is very similar to that predicted by Howe [11]. 

In the point source example, rays are emitted in all possible directions for a 

supersonic flow. As a result, some rays were redirected via the refractive effect of the 

shear layer back into the supersonic flow, while others were transmitted across. In the 

next example we consider a standing plane wave in the presence of a steady shear layer. 

For the acoustic wave to be stationary, the flow must be supersonic. The orientation of 

the plane wave corresponds exactly to the Mach angle /i = sin-1 (1/M). In Figure 6.3 

we show such a oblique standing wave. Note in particular that the orientation of 

the wave front normal n is perpendicular to the ray trajectory u = v + en. For the 
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Figure 6.1: Point source on the supersonic side of shear layer. Red: rays, black: 
wave-fronts. Dashed line indicates center vorticity thickness of shear layer. Only 
upper half of rays are computed. 

standing wave, the wave fronts are parallel to and coincident with the ray trajectories. 

The wave extends toward the shear layer at the Mach angle /x, but as it encounters 

the velocity shear, its orientation changes toward the vertical. Deta;1d of this region as 

given in Figure 6.4 show that the ray loops back on to itself in the vicinity of the sonic 

line, before proceeding back into the high speed flow. This extreme case of refraction 

is the mechanism for total internal reflection. Under steady supersonic conditions for 

which the other side of the shear layer is quiescent, the oblique standing wave must 

reflect in this manner, according to geometric acoustics. 
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5» 

Figure 6.2: Detail of Figure 6.1. 
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Figure 6.3: Standing oblique plane wave in supersonic side of shear layer, u is ray 
trajectory vector, n wave-front normal, v base flow, s is the spatial coordinate along 
the ray. At right, rays and wave fronts are shown in space-time. Projections of these 
onto x-y space collapse onto a single line, the standing wave-front. 
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Figure 6.4: Detail of Figure 6.3. Standing oblique plane wave reflects due to refraction 
by velocity shear, causing ray (and wave-front) to loop. 
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6.3    Unsteady base flow 

6.3.1    Basic behavior 

Finally we carry out the geometrical acoustics analysis for unsteady base flow. The 

unsteady base-flow implemented is the idealized mixing layer of Stuart [60], as de- 

scribed in Section 5.4. Here we set the amplitude coefficient A = 1.0. Again, the 

Mach number of the high speed stream is taken to be Mi = 1.2. 1024 rays were 

initialized on a line oriented at the Mach angle and intersecting the shear layer cen- 

terline at x = 40. The coordinate system is consistent with the linearized Euler 

cases. The initial points are spaced such that the ray initialized furthest from the 

shear layer will pass through the initial point of the ray closest to the shear layer in 

exactly one oscillation period. Rather than be spaced evenly between the first and 

last initialization points on the standing wave, the initial ray points are clustered so 

as to create a ray concentration where severe ray spreading occurs in the passage 

through the Stuart vortices. This clustering is similar to the grid node clustering of 

Section 2.6. Its settings were found through repeated trial with fewer rays (typically 

32). The rays were integrated through two oscillation cycles. The large number of 

rays was chosen to improve wave-front resolution. 64 rays and 16 wavefronts (per 

cycle) were saved. 

The rays are shcr.n in Figure 6.5 and indicate that transmission has occurred 

across the shear layer, unlike the steady shear layer example shown in Figure 6.3. 

In Figure 6.6 we show waves spaced in 1/8 cycle increments. The wave fronts are 

very similar to those observed in the Stuart vortex linearized Euler simulations (see 

Figure 5.30). 

The transmission of acoustic rays does not occur at every value of the Stuart 

vortex amplitude coefficient A. Figure 6.7 shows the onset of acoustic transmission 

as A is increased from zero, the case in which the shear layer is steady, to 1.0. In this 

figure, a set of rays representing the incident standing plane wave is arranged such that 

the rays arrive at the shear layer over one oscillation period. The A = 0 case, which 

corresponds to the steady shear layer, results in total internal reflection of the incident 

rays. As A is increased above zero, the initially weak, convecting vortices appear and 
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Figure 6.5: Rays computed from initial condition of standing plane wave interacting 
with Stuart vortex mixing layer for A = 1.0. Graph coordinates are normalized to 
initial vorticity thickness 5 of SL1 shear layer. 
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V 

Figure 6.6: Wave front computed under same conditions as in Figure 6.5.   Spaced 
every 1/8 cycle. 
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Figure 6.7: Hays representing standing wave incident on Stuart vortex mixing layer 
of various amplitude coefficient A. Dotted line represents centerline of shear layer. 
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impart deviations in the rays paths, depending on their moment of incidence; these 

deviations increase with A. Between A = 0.5 and 0.6, rays which pass entirely 

through the shear layer are detected. However, their transmission angles are confined 

to the upstream direction. As A is further increased, the range of transmission angles 

increases until it encompasses all possible angles at A = 1.0. We note that although 

there is an increase in the range of angles over which transmission occurs, the number 

of rays which are transmitted does not increase appreciably. 

6.3.2    Transmission window:   parameterizing the ray initial 

condition 

To investigate further the relationship between transmission of acoustic rays and 

the Stuart vortex parameter A, we again consider rays corresponding to a standing 

acoustic wave in the supersonic stream. We wish to determine the fraction of rays 

among all possible such rays that are transmitted, and how this fraction varies with 

A. Although a given ray may be identified by its initial position (x0, yo) and time tQ, 

the uniformity of the velocity field away from the shear layer and the periodicity of the 

shear layer itself results in rays which are not unique. We can define the entire set of 

uniquely behaving rays by reducing the initial condition to a single phase parameter 

e 
Suppose we have a periodic instability wave of wave number a, convecting at 

velocity Uc. The unsteadiness of the instability wave can be removed by using a 

phase parameter £, where 

£ = a(x - Uct) (6.29) 

Suppose now that the lower of the shear layer is supersonic at Mach number M and 

that an oblique standing wave is introduced from below. Since this wave is standing, it 

must form an angle with the flow equal to the Mach angle \i = sin-1 M-1. Information 

in this standing wave will travel toward the shear layer at speed 

Cray = cVM*-l (6.30) 
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along the standing wave, where c is the speed of sound. The wave itself, which is also 

the initial ray path, is described by the line 

1 y-yo 
X-XQ y/M2-! 

(6.31) 

The standing wave is made up of a family of acoustic rays. If we consider the ray 

which is initialized at position and time (xo,yo,to), we can find the position of the 

ray in time: 

M2-! , 
X   =   x0 H ——c(t — to) 

y 

M 

2/0 + jjj c{t - tQ) 

(6.32) 

(6.33) 

Suppose now that we have a horizontal reference line y = y\ which is crossed by the 

ray in the uniform part of the supersonic flow. At the time of crossing, the instability 

wave field is of phase f = & = a{xx - Uct\). We can find fi by solving for xx 

(Equation 6.31) and t\ (Equation 6.33). 

Xi 

h   =   to + 

xo + (yi - y0)VM2 - 1 
yi-yo      M 

C       y/M2-l 

or 

a xo - Uct0 + (j/i - yo) 
'M(M-MC)-1 

(6.34) 

(6.35) 

(6.36) 
\/M2-l 

where Mc = Uc/c. Note that y\ is arbitrary but constant. 

In the event that the mixing layer is periodic with wave-number a, the uniqueness 

of an initial condition defined by the parameter f i in Equation 6.36 is only guaranteed 

for £x varying by less than 2ir. Thus £i is a phase function and all unique initial 

conditions are denned for 0 < ft < 2ir. In Figure 6.8 we plot lines of constant fi in 

the uniform portion of the supersonic velocity field at t0 = 0, M = 1.2, Uc = 0.5, and 

arbitrary constant yi = -30. For reference, we also show contours of vorticity for 

the mixing layer at t = 0. The lines of constant £i are oriented such that to obtain 
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Figure 6.8: Initial condition phase map for £i as defined by Equation 6.36. yi = —30. 
A = 1. A: locus of ray initial conditions for case shown in Figures 6.5 and and 6.6. 
B: horizontal locus of ray initial conditions. Regions of light blue indicate all initial 
conditions which result in transmission. 
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the same ray behavior as one moves the initial condition away from the the mixing 

layer (along -y), one must also move the initial condition farther downstream. This 

can be understood from the fact that the convection speed of the vortices Uc = 0.5 

exceeds the projection of the ray speed onto the horizontal axis. 

(Cray)* = Craycosfi = cyj M1 - 1 x  —  = 0.306 (6.37) 

In Figure 6.8 we superimpose on the phase contours the locus of points (labeled 

"A") that we used to form the initial conditions for the case shown Figures 6.5 and 

6.6. We can show that transmission occurs for rays whose initial positions he between 

the points x = 28.98, y = -16.53 and x = 31.30, y = -13.14. This corresponds to the 

phase function range 1.137 < &/27T < 1.352, which due to periodicity is the same as 

0.137 < fi/27T < 0.352. We define "transmission" for a ray as the condition in which 

the ray extends beyond y = 8 on the first pass through the layer. Note that some 

rays will cross the shear layer on the second pass, i.e., after looping back into the 

supersonic side. The colored bands in Figure 6.8 indicate all the ray initial positions 

for which we expect transmission to occur. 

Returning to our investigation of the dependence of the transmission on the vor- 

tex parameter A, we need now only consider varying the ray initial condition phase 

parameter & from 0 to 2n to accommodate all unique rays. In chiß study, we achieve 

the necessary phases by holding yo = -30 (as a matter of convenience), again with 

2/i — 30, and to = 0. In choosing these initial conditions, note that the rays no longer 

originate from a single standing plane wave. The locus of initial conditions are la- 

beled B in Figure 6.8. We track the minimum and maximum phase & for which 

transmission occurs to obtain a transmission fraction ip — (f,^ - £min)/27r. 

We ensure that for yo = -30 the ray initial conditions lie in the uniform part 

of the flow. In Figure 6.9 we show ray trajectories for initial conditions at various 

distances from the shear layer. We see that there is no change in ray trajectory for 

2/o < —30, and only minor changes for yo < —20. 
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Figure 6.9: Ray trajectories for a series of initial conditions at various j/i but the same 
range of £1. to check for flow uniformity. Thick red lines indicate location of initial 
positions. Strong uniformity in transmitted ray trajectories found for yo < —30; 
near-uniformity for yo < —20. 
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-30 

-60 

Figure 6.10: Transmitted rays representing standing plane wave(s) incident on Stuart 
vortex mixing layer of magnitude A = 0.650. Initial condition phase parameter varies 
from fi/27T = 0.199 to 0.365. 

6.3.3    Transmission Window: Results 

In Figure 6.10 we show a set spanning the rays which cross the shear layer for A = 0.65. 

In this case transmission occurs for 0.199 < &/27T < 0.365, giving a transmission 

fraction I/J = 0.166. Over the range of 0 < A < 1.2 this transmission "window" is 

found to be nonexistent up to A = A^it = 0.54, above which point it grows rapidly 

(Figure 6.11). The corresponding transmission fraction is shown in Figure 6.12. 

As observed earlier, at vortex amplitude A just above the threshold of trans- 

mission Aa-it, the range of transmission angles is limited to the upstream direction 

9 = 180°. As A increases, the minimum transmission angle 0min decreases to include 

the downstream direction. This trend is shown in Figure 6.13. Note however that 

the rays associated with & = fmin and & = Zmax both have transmission angles in 

the upstream direction. The ray associated with 0mjn is initialized at an intermediate 

phase £min < fx < Zmax, indicating that the wave front of the transmitted acoustic 
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Figure 6.11: Minimum and maximum phase parameter £/2TT for which transmission 
is found to occur across Stuart mixing layer. 
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Figure 6.12: Fraction tj> of all possible rays (representing an oblique incident standing 
wave) which pass through Stuart vortex mixing layer. 
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180 

Figure 6.13: Minimum transmission angle for rays passing across Stuart vortex mixing 
layer. 

rays folds back onto itself. This pattern, clearly observed in the wave-front visual- 

izations of Figure 6.6, is the transmission of the entire incident plane wave reflection 

system through the shear layer. The same phenomenon was observed in the DNS 

Case A2, as seen in Figure 3.12. 

Although the wave front visualization: oT Figure 6.6 strongly support the notion 

that the acoustic radiation which results from shock instability wave interaction is 

governed by refractive behavior, certain details are inconsistent and suggest that geo- 

metrical acoustics provides only a partial explanation of the observed behavior. The 

first is the nature of the onset of transmission; this onset occurs suddenly and does 

not motivate the exponential rise in transmitted acoustic amplitude we observed in 

the linearized Euler simulations. The critical value of Stuart vortex amplitude A 

above which transmission occurs corresponds more closely to the region of saturation 

observed in the linearized Euler calculations. Finally, at the onset of transmission, 

the transmission angle in the geometrical acoustic cases is limited to the upstream 

direction.   This range of transmission angles increases to include the downstream 
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directions with A. However, this behavior is not observed in the simulations; trans- 

mission occurs in all directions. It is suggested that the refractive behavior best 

explains the sound generation mechanism for high instability wave amplitude. At 

lower amplitude other physical mechanisms, such as diffraction, may come into play, 

and further, explain the exponential dependence of acoustic amplitude on instability 

wave amplitude. The issue of incident wave width may also play a role in determining 

the dominant behavior. 

6.3.4    Role of Unsteadiness 

The issue of the role of the unsteadiness, as opposed to a frozen instantaneous field, 

in producing the conditions for refraction was also studied. The Stuart vortex mixing 

layer field consists of a velocity field pattern which translates at velocity Uc. Setting 

Uc = 0 allows one to "freeze" the velocity field pattern without modifying the far field 

values, albeit by producing an somewhat unphysical flow. We introduce a set of rays 

at fixed distance from the centerline of the layer and over one instability wavelength 

for various vortex amplitude A. As seen Figure 6.14, rays will not pass through the 

mixing layer under these frozen conditions. We conclude then that the unsteadiness 

brought about by the convection of the vortices, in addition to the vortex velocity 

field, is necessary for the periodic transmission we observe. 
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Figure 6.14: Rays incident on "frozen" (non-convecting) Stuart vortex mixing layer. 
Transmission is found not to occur. 



Chapter 7 

Conclusions 

The objective of this work was to elucidate the mechanisms governing the genera- 

tion of sound in supersonic jet screech. We investigated the behavior of an isolated 

screech-type source arising from large scale instability-wave shock interactions. To 

approximate the source in the absence of screech feedback, we devised a simplified 

model problem comprised of a forced, supersonic shear layer and an oblique shock. We 

simulated the instability wave shock interaction and measured the resulting sound. To 

study problem with fewest assumptions, we first solved the full Navier-Stokes equa- 

tions. We then invoked a series of progressive simplifications to the model probl 
and studied the problem again at each step: 

lern 

1. We reduced the shock to a weak compression wave within the Navier-Stokes 
framework. 

2. We decomposed the problem into an unsteady base-flow from DNS and an 

incident/scattered perturbation field; we obtained these solutions using the lin- 
earized Euler equations. 

3. We replaced the monotonic compression wave with a compact- profile Gaussian 
wave. 

4. We replaced the DNS shear-layer base-flow with an idealized mixing-layer model. 

168 
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5. Finally, we replaced the linearized Euler equations with the equations governing 

geometric acoustics for an unsteady base-flow. 

Although not every detail carried over to the next level of simplification, we found 

the basic description of the sound generation process to remain the same. A compos- 

ite of flow visualizations illustrating this commonality is shown in Figure 7.1. The 

conclusions based on these studies are listed below and grouped in terms of those 

obtained from DNS, the linearized Euler simulations, and geometrical acoustics. 

Direct Numerical Simulations 

• The passage of instability wave vortices across an incident shock results in large 

fluctuations in the shock. Coupled with these fluctuations is the generation of 

the sharp compression front of the acoustic wave, which occurs precisely as the 

shock travels upstream between the vortices in its oscillation cycle. The shock 

itself "leaks" through the shear layer at this point as the sound wave. 

The sound generated by the interaction exhibits sufficient upstream directivity 

to create an upstream-traveling, oblique Mach wave in the supersonic stream. 

The upstream directivity is significant because of screech feedback and its de- 

pendence on shear layer receptivity at the nozzle lip. It is clear that the am- 

plitude in this direction is influenced by the details of the shear layer and the 

amount of refraction the acoustic wave undergoes on its way upstream. It is 

noted, however, that the upstream direction is not the direction for maximum 

directivity of a single source. 

The instability-wave shock interaction and sound emission behavior is essen- 

tially reproduced with weak compression waves, indicating that the nonlinearity 

of the shock is not required for the screech-type sound generation process to oc- 

cur. The amplitude of the acoustic field is found to scale with the compression 

wave amplitude. These findings are the basis for the decomposition we perform 

in the linearized Euler analysis, and ultimately, geometrical acoustics. 

• 
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Figure 7.1: Visualization of sound generation as observed in (a) DNS, with incident 
compression wave; (b) linearized Euler, with DNS base flow, and incident compression 
wave; (c) linearized Euler, with DNS base flow, and incident G-wave; (d) linearized 
Euler, with Stuart vortex base flow, and incident G-wave; (e) geometrical acoustics 
with incident Mach wave. 
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• Slow, downstream-traveling waves are found to appear and persist in the super- 

sonic stream and serve as secondary sources of sound via essentially the same 

interaction mechanism. The origin of these waves is not entirely clear, but they 

have been observed over the entire range of instability wave amplitudes. In some 

cases they appear to be the external sound field returning to the supersonic flow 

after refracting through an instability wave. At low instability wave amplitude 

they can become primary sound sources. These features are reproduced in both 

the linearized Euler analysis and geometrical acoustics. 

Linearized Euler simulations about an unsteady base flow 

• Numerical solutions of the Euler equations, linearized about an unsteady base 

flow obtained from DNS, are used to show that the screech generation process 

can be regarded as the scattering of an incident standing wave by instability 

waves. This may represent the first instance in which an unsteady base flow is 

used with the linearized Euler equations to study supersonic jet noise. 

• The linearized Euler simulations are used to show that the sound generation pro- 

cess is governed by thresholding phenomenon, whereby the acoustic amplitude 

rises exponentially with instability wave amplitude until a saturation state is 

reached. There is also evidence of third regime of dependence at low instability 

wave amplitude. The reason for saturation is clear: the velocity field associated 

with the high instability wave amplitude is sufficient for complete leakage of 

the incident wave. The exponential growth with instability wave amplitude are 

believed to be related to the exponential decay of evanescent waves across a 

shear layer; "partial leakage" occurs in the exponential region. 

• The velocity field is shown to be the critical feature of instability waves which 

result in the sound generation. Replacing the the DNS base flow with an incom- 

pressible vortex mixing layer solution with thermodynamic variations omitted 

is shown to reproduce much of the sound generation behavior, including the 

thresholding phenomenon. In particular, the vertical component of the vortex 

velocity fluctuation has been shown a greater enabler of the leakage than the 
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horizontal component. The Stuart vortex mixing-layer has proven to be a use- 

ful tool for studying the dependence of the screech generation process on the 

velocity field due to its analytic description. 

Geometrical Acoustics 

• The sound generation process is reproduced with geometrical acoustics by in- 

tegrating ray paths through a vortex laden shear flow. This result shows that 

the high amplitude screech generation process is fundamentally driven by the 

unsteady refraction of the incident shock and that "leakage" is an appropriate 

characterization. 

• Geometrical acoustics may not be an appropriate framework for explaining the 

sound generation at low instability wave amplitude. As instability wave am- 

plitude is reduced, the leakage process as predicted in geometrical acoustics is 

abruptly cut off. In the linearized Euler simulations, although an exponential 

reduction in acoustic level was observed, sound was still produced at instability 

wave amplitudes below the geometrical acoustics cut-off. 

7.1    Recommendations for Future Work 

• This present work obtained some basic results for the interaction of an instability 

wave and a shock. However, these results were limited. It is of interest to 

examine effect of the shock on the initial propagation of the acoustic wave. For 

sufficiently strong shocks, the leakage effect of sound production would suggest 

that these sound waves retain shock-like amplitudes in the near field. As we have 

observed significant interaction of the radiated field with the shear layer, strong 

traveling shocks may have a significant effect on the evolution of instability 

waves. 

• We have identified three regimes of acoustic field dependence on the instabil- 

ity wave amplitude:   low amplitude, exponential, and saturation.   Based on 
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the Stuart vortex results, we show that there is a linear dependence on insta- 

bility wave amplitude at the low instability wave levels; this is consistent with 

broad-band shock noise observations and models. Can sound from these low am- 

plitude interactions be reliably predicted with acoustic analogy models? Can 

such acoustic analogy models be extended to accommodate higher amplitude 

instability waves? 

• In jets undergoing screech, the oscillation modes are typically asymmetric and 

involve significant cross-jet interaction. Furthermore, experiments [33] have 

shown more shock oscillation at the jet centerline than at the shear layer. What 

impact does having a true shock cell structure have on the shock noise genera- 

tions mechanisms observed in the present work? 



Appendix A 

Compression Wave 

In this appendix we describe the basis of the incident, oblique compression wave. 

The compression wave is implemented as a boundary condition in both the Navier- 

Stokes computations of Chapters 2 and 3 and the linearized Euler computations of 

Chapters 4 and 5. The Navier-Stokes description of the compression wave differs from 

the linearized Euler description in that finite amplitude effects are accommodated in 

the former (short of actual shock formation) but neglected in the latter. The following 

description applies to the Navier-Stokes version. The simplifications for the linearized 

Euler version are given at the end of this appendix. 

A.l    Compression waves in the Navier-Stokes sim- 

ulations 

The compression wave is introduced over a region of sufficient width to prevent a 

shock from forming anywhere in the interior. The boundary condition prescription 

also assumes that the compression wave reflects from a steady shear layer and forms 

an expansion wave. A schematic of what occurs is shown in Figure A. la. 

A compression is introduced into the flow between points A and B at the lower 

boundary of the domain. The flow is supersonic, and is bounded by a shear layer, 

where the stream above the shear layer is assumed to be subsonic. The compression 
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Figure A.l: Schematic of compression wave system, a) Layout, with width w defined 
as indicated, b) Detail of geometry with which layout is estimated. 
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wave extends into the supersonic flow obliquely until it encounters the shear layer. 

Since the compression wave cannot be supported beyond the sonic line of the shear 

layer, it must reflect back into the supersonic flow. Because the pressure field beyond 

the sonic line is uniform and equal to the pressure upstream of the compression 

wave, the reflected wave must maintain this pressure uniformiiy and therefore is an 

expansion wave. The expansion wave then extends back to the boundary at points 

C and D. A streamline which travels through the compression wave from region 1 is 

turned upward toward the shear layer in region 1-2. The streamline is again turned 

toward the shear layer as it passes through the reflected expansion wave in region 2-3. 

This turning causes the shear layer to be deflected away from the lower boundary. 

The "width" of the compression wave is not defined at the domain boundary, but 

instead at the reflection site (see Figure A.la). This length is denoted w. The wave 

system will consist of six distinct regions. These are (1) upstream supersonic flow; 

(1-2) compression wave alone; (2) region between compression wave and expansion 

wave; (1-2-3) region of both compression and expansion waves; (2-3) expansion wave 

alone; and (3) supersonic region downstream of the wave system. 

The critical part of the boundary condition is located in the region between A 

and B, where the compression wave is imposed. The conditions prescribed here will 

determine the wave shape for the rest of the system. The boundary condition between 

C and D is primarily imposed to ensure compatibility with far downstream conditions 

(i.e., region 3). In practice, the waves approaching the C-D region will be unsteady 

and in no way resemble the mean. Given that the C-D region need not be specified 

with any significant accuracy, we make certain approximations when producing the 

pressure distributions in that area. The first assumption is that the shear layer is a 

vortex sheet. The second is to approximate the reflection process itself with a crude 

use of the method of characteristics. In the Figure A.lb, we indicate all the points 

for which we control the orientation of the Mach wave characteristics (A through G), 

and angles associated with those characteristics. 

We relate these characteristic angles in the following manner. We specify p\ and 

P2, the pressure upstream and downstream of the compression wave, respectively. 

Note that the pressure downstream of the entire wave system, p^, is equal to the 
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upstream pressure, p\, due to the pressure compatibility condition across the shear 

layer. We assume that the pressure will vary in some smooth manner between regions 

1 and 2 (e.g., according to a hyperbolic tangent function). The Mach numbers are also 

noted, i.e., M\ is specified, and M3 = M\. In the region between the compression 

and the expansion, the Mach number M2 is found from the pressure pi using the 

isentropic relations: 

#2 

Pi 

1 + ^Ml 
.l + 2=iJW?. 

7-1 

which gives 

M2 = MtefW*)- 1 7-1 I VPi/        V 2 

We define the angle 0 as the orientation of the streamline. Thus 

(A.l) 

(A.2) 

0i   =   0 

02 =     0! + KM) - v(M2) 

03 =   02 + f(M3)-j/(M2), 

where v(M) is the Prandtl-Meyer function, defined as 

u{M) 

(A.3) 

(A.4) 

(A.5) 

Jl±l tail-i ^/l±i(M2 _ i) _ tan-i JMT^I. (A.5) 

The Prandtl-Meyer function applies for both compression and expansion waves in this 

case since both are required to be isentropic (i.e., no actual shock formation). Care 

is to be taken to realize that the function must be used in opposite the conventional 

sense when applying it to compressions, as when we obtain 02. 

We also define the Mach angles y.u /x2, and /x3 for the three regions using the local 

Mach number: 

^=sin~x ih) ■ (A-7) 

We can now define the specific geometry of the wave reflection structure. The Mach 

lines enclosing the region in which the compression and expansion waves overlap are 
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generally curved; these lines are approximated as straight lines oriented at the average 

of the orientation at the adjoining endpoints. Other Mach lines are straight lines. The 

angles we use to approximate the Mach line orientations are then 

OtAE    = OCA=f*l (A.8) 

(*EG    = 
<*E + OCG        Hi + (H2 - 62) 

2                               2 (A.9) 

&BG    = &B = f*2 + 02 (A.10) 

OCEF    = 
Ocp"        Ö3 

2        2 
(A.ll) 

OCGF    = 
aG> + aF      (ß2 + 02) + (fj,3 + 03) 

2                            2 (A.12) 

<*GC    = ac = 1*2- 62 (A.13) 

<*FD    = a/? = Hz - 03 (A.14) 

We define a height h to denote the distance from the domain's lower boundary to the 

shear layer. 

Vertex positions: let (x^c, y^) denote the center of the source location (not taking 

the deflection of the shear layer into consideration). Then we can define coordinates 

of the wave structure relative to those points. 

XE   =   Xsrc-w/2 (A. 15) 

VE   =   y*c (A. 16) 

' xF    =    Xsrc + w/2 (A. 17) 

VF = Vsrc + wtaaaEF (A. 18) 

XA = xE -h/tanaAE (A.19) 

VA = Vsrc-h (A.20) 

xD = xp + h/tanaFD (A.21) 

VD   =   VA (A.22) 
VE — VF + XE tan OCEG + xp tan OCGF 

XG   =    7 —  (A.23) 
tan C*EG + tan C*GF 

ys tan OCGF + VF tan QEG + (XE - xp) tan OLEG tan OLGF        ,. „ .x 
VG   = — —       (A.24) 

tan aEG + tan OCGF 
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VB = VA (A.25) 

XB = xG-(ya-yß)/tan aBG (A.26) 

yc = VA (A.27) 

xc = XG -(yG-yc)/ tan C*CG (A.28) 

Once the overall geometry is set, we define a local coordinate system for each the 

compression and the expansion waves. This coordinate system takes advantage of 

the property that the flow will remain constant along characteristics (for each kind 

of wave); the region of overlap will be assumed outside the boundary zone region and 

will not be computed in detail. 

The compression and expansion wave coordinates are 

_    ,-,„(,) 
XBoiy) ~ XAEW 

_       *-*cc(v) 
XFD{y) - xGC(y) 

where XAjs(y) is the leading edge Mach line of the compression wave, xBG(y) the 

trailing characteristic, and likewise for the expansion wave with xcc{y) and xpoiy), 

respectively. Those lines are given by 

XAEiy)   =   xA+V~VA (A.31) 
tan atAE 

xBG(y)   =   xB + * ~VB (A.32) 
tan ctBG 

xcc(y)   =   xc + ? ~ VC (A.33) 
tan acG 

XFD(V)   =   xD+V~VD (A.34) 
tan apo 

The pressure change through each the expansion and the compression then becomes 

a function of only ^ and £., respectively: 

&c   =   +^(£:)Ap (A.35) 

%   =   -^(ee)Ap (A.36) 
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where Ap = p-i — p\. The shape function ip(£) defines how the pressure is distributed 

across each of the compression and expansion waves. In our case we have defined the 

shape function using a hyperbolic tangent function, 

(A.37) *<0 = i [l+tanh^"1/2)] 

where the transition width parameter 

1 

"" '      2tanh-1(2e^-l) 

is defined so that 

V'(O)   =   e* 

V>(1)   =   1-e*. 

(A.38) 

(A.39) 

(A.40) 

We have used e^, = 1%. 

Finally, to determine local flow conditions in terms of velocity we compute the 

local Mach number based on the local pressure 

MlocalipiocahPrefiMref) = 
Pi cat 

7-1   I  V Irrzf V^-T**) 
We use this relation to compute "actual" Mach number 

(A.41) 

M = Miocaiipx +p'c+ p'c,Pl, Mi) (A.42) 

and Mach number due to the compression and expansions alone, respectively: 

Me    =    Muxatfa+p'^p^Mi) 

Me   =   Miocoi(p1+^,p2,M2). 

(A.43) 

(A.44) 
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Mc and Me are used to compute the local turning angles using the Prandtl-Meyer 

functions: 

#e   =   v{M{)-v(Mc) (A.45) 

&„   =   u{Me)-u{M2) (A.46) 

giving a total angle 

0 = e1 + 6'c + 9'e. (A.47) 

With p = pi +j/c +j/e, temperature acquired through the isentropic relation 

T = Tq(^Y (A.48) 

and speed of sound c = y/yRT, the velocity field is acquired simply as 

u   =   Mccos(d) (A.49) 

v   =   Mc sin(0). (A. 50) 

Finally, the density field is acquired using the ideal gas law, 

P=Rj;- (A.51) 

A.2    Simplifications for the linearized Euler simu- 

lations 

In the linearized Euler simulations, the oblique compression wave is introduced as 

a perturbation to the base flow solution. In other words, the compression wave is 

introduced as a boundary condition of the perturbation field. Because we assume 

that the magnitude of the perturbation variables are much smaller than the magni- 

tude of the base flow quantities, the linear assumptions are invoked. The presence 

of the compression wave system is assumed to have a negligible impact on the base 
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Figure A.2: Schematic of compression wave system for linearized Euler simulations. 
Note that a A is the Mach angle for region 1. 

flow. As a consequence, the orientation of the waves are determined solely by the 

properties of the base flow. In regions where flow properties are uniform, the Mach 

angles are fixed. Hence neglecting the deflection of the shear layer, approximating the 

shear layer as a vortex sheet, and assuming uniformity in the supersonic flow yields 

a simplified geometry for the wave system, as depicted in figure A.2. Flow proper- 

ties are then obtained by translating the conditions applied at the boundaries along 

characteristics at the Mach angle toward the shear layer. The reflected expansion 

wave then assumes the the corresponding flow properties for downward propagating 

characteristics. In the linearized Euler simulations, a Gaussian profile is also invoked 

on the lower boundary. Because of the assumptions of linearity, the wave system is 

not sensitive to this modification. The procedures for determining the solution in the 

region in which the reflected waves intersect the lower boundary remain the same as 

for the compression/expansion wave system. 

The relationships among the perturbation variables is determined through super- 

sonic "thin airfoil" theory, wherein the deflections from the flow direction are assumed 

to be very small compared to the velocity magnitude. In this context, we relate the 
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velocity fluctuations to the prescribed pressure fluctuations with 

1 
u    = 

PiUi 
■P (A.52) 

"' = £?< <A53> 
where ß = yjMf - 1. Density is obtained through the linearized isentropic relation, 

Pi      TPi 

The Mach wave angle is given by a A = n = sin-1 (1/Mi). 

(A.54) 



Appendix B 

Validation 

In this appendix we carry out grid and filter refinement studies. We test the grid 

resolution and Pade filter settings employed in the Navier-Stokes (Chapters 2 and 3) 

and linearized Euler simulations (Chapters 4 and 5). At the end of this appendix, we 

also verify that the linearized Euler simulations behave linearly, i.e., that the solution 

scales directly with the flow "inputs". 

The grid distribution is described in Section 2.6, and the filtering method is de- 

scribed in Section 2.2.5. In choosing the grid resolution, we are striking a balance 

between numerica1 accuracy and computational cost. We use the filter to remove 

unresolved, high frequency components of the numerical solution. In the case of 

the Navier-Stokes simulations, high frequency waves arise primarily from weak eddy- 

shocklets that appear above and below saturated vortices. In the case of the linearized 

Euler simulations, filtering supplies numerical dissipation to an otherwise numerically 

undamped scheme. Resolution also plays an important role in the behavior of the 

filter with respect to features that appear in the flow. The transfer function of the 

filter responds to the resolution of the feature with respect to the local grid rather 

than its physical scale. Hence, in validating grid resolution, we are also validating 

the filter parameters chosen. 

184 
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B.l    Navier-Stokes simulations 

With regard to resolution, the initial concern in the case of the Navier-Stokes simula- 

tions is that the shear layer development be accurately represented. When instability 

waves are small, the shear layer is essentially parallel and is dominated by the ve- 

locity gradient, in the ^/-direction. The width of the shear layer is of the order of 

the initial vorticity thickness. As the vortices develop, the mean vorticity thickness 

increases four-fold (see Figure 3.7). Further, the regions between the vortices contain 

thin remnants of the shear layer (often called "braids"). Thus the grid must con- 

tain sufficient maximum resolution to resolve these small features, and this region of 

maximum resolution must be large enough to encompass the growth of the vortices. 

In the following we compare SL1 shear layer computations carried out on meshes 

whose y-direction grid counts are Ny = 291 and Ny = 446. The smaller case cor- 

responds to the grid size used in the computations presented in Chapter 3. The 

domain size in x and y remains fixed. Because the y-direction represents the critical 

direction with respect to resolution constraints, the x-resolution is also held fixed at 

Ax/5 = 0.1 in this study. 

Because the grid stretching and distribution parameters are identical, the y- 

resolution differs by a constant factor of 445/290 «1.5 over all y. The minimum 

and maximum y-direction grid spacing is Ay/<S=0.0667 and Ay/J = 0.444, respec- 

tively. To retain the approximately the same CFL number (see Equation 2.37), we 

reduce the time step At by a factor of 1.5. Accounting for the increased grid size and 

the reduced time step, the increase in the computational expense of the Ny = 446 

case is therefore 1.52 = 2.25 times the Ny = 291 case. 

Between the two grid cases, the Pade filter coefficient a' is held constant at 2.222. 

The number of time steps between filter application is increased from A//iiter = 10 

to 15 because the change in time step. To quantify the degree to which the higher 

resolution grid reduces the filtering effect for fixed filter coefficient a', we consider 

the following. The effect of increasing the spatial resolution by 1.5 is that of reducing 

the severity of filtering at a fixed grid wave number k! = fc(Ay)jvy=29i- Here we have 

defined the grid wave number fc7 with respect to the Ny = 291 grid to permit us to 
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Figure B.l: Filter transfer function comparison. 

compare the response of filter transfer functions in the two grid cases to features of 

the same size. In Figure B.l we show the filtering transfer function T against fixed 

grid wave number fc7 for three cases. The first case (solid line) corresponds to the 

Ny = 291 case, which we use as a reference. The second case (dashed) corresponds 

to the Ny = 446 case. The third case (dash-dot) is explained below. We see that for 

fixed grid wave number, the increased resolution reduces the effect of the filter. This 

is more clearly seen when the transfer function is subtracted from unity, as shown 

in Figure B.2. The 50% increase in grid resolution reduces the influence of the filter 

by nearly an order of magnitude over the entire wave-number range. The third case 

(dash-dot) is the filter transfer function which duplicates (over the lower half of the 

grid wave number range) the effect of increasing the resolution by instead modifying 

the filter coefficient. We conclude that for the lower grid wave numbers, the 1.5 

increase in grid resolution is analogous to reducing the filter coefficient a' from 2.222 

to 2.04. Hence, the grid resolution validation also serves as a filter validation. 

In Figures B.3 and B.4   we plot the instability wave amplitude (squared), as 

defined in Equation 3.1, for both Ny = 291 and Ny = 446.  We obtain very good 
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Figure B.3: DNS resolution and filter validation using instability wave amplitude K. 
Ny is the number of grid points in the spanwise direction. 
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Figure B.4: DNS resolution and filter validation using instability wave amplitude K. 
Ny is the number of grid points in the spanwise direction. 

agreement over the entire range of amplitude, from inflow to the saturated region. In 

the saturated region we do obtain a small discrepancy in amplitude, representing a 

maximum error of 1.8% in K (or 3.5% error in K2). For the purpose of computing an 

unsteady, forced shear layer, this discrepancy is acceptable; the grid resolution and 

filter settings do not severely impact the computational results. We also find good 

agreement in the shear layer growth rates (see Figure B.5). 

The second concern in the Navier-Stokes simulations is that the acoustic field 

be sufficiently resolved by the grid and uninfluenced by the filters. The grid falls 

to its lowest density (A3//0" = 2.0) in the y-direction near the upper boundary of 

the computational domain. Because the acoustic wave propagation is an inviscid 

and essentially linear process, at least in the region of lowest grid resolution, we 

carry out these validations in the context of the linearized Euler resolution and filter 

validations. The y-distribution of grid points is identical for all DNS and linearized 

Euler simulation cases. These validations are presented in the following sections. 
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Figure B.5: DNS resolution and filter validation using growth rate of instability wave 
amplitude K. Ny is the number of grid points in the spanwise direction. 

B.2    Linearized Euler simulations 

In the linearized Euler computations, there are four classes of runs carried out: com- 

pression wave w^h DNS base flow, G-wave with DNS base flow, compression wave 

with Stuart voiiexjjaseilow, and G-wave with Stuart vortex base flow. These are 

summarized in Table B.l. The base flow is prescribed in the linearized Euler compu- 

tations; therefore, in these validations we are checking only that the acoustic results 

are insensitive to the filter and resolution settings. Because of the variation in flow 

configurations among the classes, the limits of the computational method are stressed 

in somewhat different ways. 

In the linearized Euler results presented in Chapter 5, we carried out the sim- 

ulations using computational grids of Nx = 301 by Ny = 291, except as noted in 

Table 5.1. The mesh is held uniform in x, at Ax = 0.2 and stretched in the y direction 

according to the prescription given in Section 2.6. Note that the x resolution is half 

that used in the DNS, whereas the y mesh resolution is identical. The Pade filter 
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Base Flow Compression wave <        < G-wave       a'        a'           x                  v 
DNS (C-DNS) 2.222    2.222 (G-DNS)    2.222   2.050 

Stuart C-Stuart 2.222    2.222 G-Stuart    2.222    2.222 

Table B.l: Classes of linearized Euler computations with reference filter settings. 
( ) Validations not carried out. 

coefficient a' is generally assigned independently in the x and y directions; these are 

indicated in Table B.l. We refer to these grid and filter settings as the reference set- 

tings. For these reference cases, the incident compression or G-wave is Ap/p^ = 0.01. 

To verify that the results are independent of these grid size and filter settings, we 

repeat select cases at finer grid sizes but with fixed coefficients settings. As discussed 

in the the DNS validation above, refining the mesh while holding the filter coefficient 

constant constitutes relaxing the filter strength. 

A specific validation for the compression wave on the DNS base flow was not 

carried out because a DNS base flow on a refined grid was not readily available. 

For the compression wave validation, we rely on the^C-Stuart case in which we can 

readily increase the base flow grid resolution due to its analytic description. Thus in 

Figure B.6 we compare the directivity of the compression wave at r/S = 30 from the 

apparent source at two grid resolutions: 301 x 291 and 601 x 581. The Stuart vortex 

amplitude A — 0.7. We find that th*. acoustic directivity changes by no more than 

3%. 

For the G-wave, a similar grid refinement is carried out on the same A = 0.7 Stuart 

base flow, using the same grid resolutions and filter coefficients as in the compression 

wave case. As shown in Figure B.7, the change in acoustic directivity changes by no 

more than 2.5%. 

B.3    Linearity Check: the Linearized Euler Equa- 

tions 

The linearized Euler equations (Equations 4.10 through 4.12) are by definition linear 

in the perturbation field Q'm, m = 1,... ,4. The flow "inputs" consist solely of the 
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Figure B.6: Acoustic directivities in grid refinement study of incident compression 
wave on Stuart vortex base flow at A = 0.7. 

"a. 
< 

-•-   301x291 oi-2.222, oy-2.222 
—   601x581 «4-2.222, a^-2.222 

0.10 

00ft 

0.06 

—•— 

0.04 

0.02 

000  ■ , 
—i           i  1 1 1 i            i 

90  100  110  120  130  140  150  160  170  160 

6 (degrees) 

Figure B.7: Acoustic directivities in grid refinement study of incident G-wave wave 
on Stuart vortex base flow at A = 0.7. 
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boundary condition, namely, the incident Mach wave. This Mach wave is imposed 

at the lower boundary of the computational domain via the damping sponge. An 

acoustic field which scales directly with the imposed Mach wave amplitude would 

indicate that the solution is linear. To verify that the numerical solutions to the 

linearized Euler equations are linear, we carried out a series of computations with 

identical base flows and varied the amplitude of the incident Mach wave. The base 

flow is the Stuart vortex mixing layer, as defined in Section 5.4, with A = 0.6. The 

grid is identical to that used for the Stuart vortex base flow cases in Chapter 5. 

We compare a compression wave against an expansion wave, where the Mach wave 

amplitude is set to Ap/p«, = +0.01 and -0.01. We find the radiated acoustic field, 

normalized to their respective Mach wave amplitude, to be essentially identical but 

of opposite sign. Time traces of the acoustic field as normalized to the amplitude of 

the compression wave Ap/p^ = +0.01 are shown in Figure B.8. The departure from 

linearity is measured in terms of the following expression: 

Error= 
(pl/Ap-) - (j/JAP+) 

ApV/Ap+ (B.l) 

where the subscript indicates the sign of the incident wave. The error based on this 

definition is plotted against time in Figure B.9; the maximum of this error is plotted 

against observer angle in Figure B.10. We show that the error, though small for »11 

angles, rises with upstream angle up to 10~3. This degree of linearity is sufficient for 

the present computations. 
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Figure B.8: Acoustic pressure traces resulting from interaction of Mach wave and 
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 compression wave (Ap/poo = +0.01); -- - expansion wave (Ap/p«, = —0.01). 

fc|    10* 

6.0    6.2    6.4    6.6    64    7.0    72    7.4    7.6    7.6    8.0 

t/T 

Figure B.9: Time history of relative error in normalized pressure fluctuation p'/Ap 
for compressim waves cfAp=±0.01v^^_ 



APPENDIX B.  VALIDATION 194 

i<r* 

itr* 

* i 1 1    i r- 

90  100 110 120 130 140 ISO 160 170 180 190 200 

6  (degrees) 

Figure B.10: Angular dependence of maximum relative error in normalized pressure 
fluctuation p'/Ap for compression waves of Ap = ±0.01. 



Bibliography 

[1] A. B. Cain and W. W. Bower. Modeling supersonic jet screech: Differential 

entrainment and amplitude effects. In AIAA 34th Aerospace Sciences Meeting 

and Exhibit, number AIAA 96-0916, Reno, NV, January 15-18 1996. 

[2] A. B. Cain, W. W. Bower, S. H. Walker, and M. K. Lockwood. Modeling su- 

personic jet screech. Part 1: Vortical instability wave modeling. In AIAA 33rd 

Aerospace Sciences Meeting and Exhibit, number AIAA 95-0506, Reno, NV, Jan- 

uary 9-12 1995. 

[3] M. D. Dahl and P. J. Morris. Noise from supersonic coaxial jets. Part 2: Normal 

velocity profile. Journal of Sound and Vibration, 200(5):665-699, 1997. 

[4] M. G. Davies and D. E. S. OldCeld. Tones from a choked axisymmetric jet. I. 

cell structure, eddy velocity, &^d source locations. Acustica, 12:257-266, 1962. 

[5] M. G. Davies and D. E. S. Oldneld. Tones from a choked axisymmetric jet. II. 

the self-excited loop and mode of oscillation. Acustica, 12:267-277, 1962. 

[6] J. B. Freund. Proposed inflow/outflow boundary condition for direct computa- 

tion of aerodynamic sound. AIAA Journal, 35(4):740-742, 1997. 

[7] A. Hammitt. The oscillation and noise of an overpressure sonic jet. Journal of 

the Aerospace Sciences, 28(9):673-680, 1961. 

[8] M. Harper-Bourne and M. J. Fisher. The noise from shock waves in supersonic 

jets. Technical Report CP 131, AGARD, 1974. 

195 



BIBLIOGRAPHY 196 

[9] A. Harten and S. Osher. Uniformly high-order accurate non-oscillatory schemes, 

I. SIAM Journal Numerical Analysis, 24:279-309, 1987. 

[10] J. A. Hay and E. G. Rose.   In-flight shock cell noise.   Journal of Sound and 

Vibration, 11(4):411^20, 1970. 

[11] M. S. Howe. Transmission of an acoustic pulse through a plane vortex sheet. 

Journal of Fluid Mechanics, 43:353-367, 1967. 

[12] M. S. Howe and J. E. Ffowcs Williams. On the noise generated by an imper- 

fectly expanded supersonic jet. Philosophical Transactions of the Royal Society 

of London A, 289:271-314, 1978. 

[13] T.-F. Hu and D. K. McLaughlin. Flow and acoustic properties of low reynolds 

number underexpanded supersonic jets. Journal of Sound and Vibration, 

141(3):485-505, 1990. 

[14] M. Israeli and S. A. Orszag. Approximation of radiation boundary conditions. 

Journal of Computational Physics, 41:115-135, 1981. 

[15] W. M. Jungowski. Influence of closely located solid surfaces on sound spectra 

radiated by gas jets. In Proceedings of the Symposium oj the Mechanics of Sound 

Generation in Flows, pages 117-122, Gottingen, Gp^nany, 1979. 

[16] E. J. Kerschen and A. B. Cain. Modeling supersonic jet screech. Part 2: Acoustic 

radiation from the shock-vortex interaction. In AIAA 33rd Aerospace Sciences 

Meeting and Exhibit, AIAA 95-0507, Reno, NV, January 9-12 1995. 

[17] A. KrothapaUi. Revisiting screech tones: Effects of temperature. In AIAA 

34th Aerospace Sciences Meeting and Exhibit, number AIAA 96-0644, Reno, NV, 

January 15-18 1996. 

[18] A. KrothapaUi, Y. Hsia, D. Baganoff, and K. Karamcheti. The role of screech 

tones in mixing of an underexpanded rectangular jet. Journal of Sound and 

Vibration, 106(1):119-143, 1986. 



BIBLIOGRAPHY 197 

[19] T. K. Lee and X. Zhong. Spurious numerical oscillations in simulation of su- 

personic flows using shock-capturing schemes. AI A A Journal, 37(3):313-319, 

1999. 

[20] S. K. Lele. Compact finite difference schemes with spectral-like resolution. Jour- 

nal of Computational Physics, 103(1): 16-42, 1992. 

[21] M. J. Lighthill. On sound generated aerodynamically. I. general theory. Proceed- 

ings of the Royal Society of London A, 211(1107):564-587, 1952. 

[22] M. J. Lighthill. On the energy scattered from the interaction of turbulence 

with sound or shock waves. Proceedings of the Cambridge Philosophical Society, 

49:532-551, 1953. 

[23] Ganyu Lu and Sanjiva K. Lele. Numerical investigation of skewed mixing lay- 

ers. Technical Report TF-67, Department of Mechanical Engineering, Stanford 

University, 1996. 

[24] K. Mahesh, P. Moin, and S. K. Lele. The interaction of a shock wave with 

a turbulent shear flow. Technical Report TF-69, Department of Mechanical 

Engineering, Stanford University, 1996. 

[25] R. R. Mankbadi, R. Hixon, S.-H. Shih, and L. A. Povinelli. Use of Unearned 

euler equations for supersonic jet noise prediction. AIAA Journal, 36(2):140-147, 

February 1998. 

[26] T. A. Manning and S. K. Lele. Numerical simulations of shock vortex interactions 

in supersonic jet screech. In 36th AIAA Aerospace Sciences Meeting and Exhibit, 

number AIAA-98-0282, Reno, NV, Jan. 1998. 

[27] T. A. Manning and S. K. Lele. Numerical simulations of shock vortex interactions 

in supersonic jet screech: an update. In Proceedings of FEDSM '98: 1998 ASME 

Fluids Engineering Division Summer Meeting, number FEDSM-5238, Washing- 

ton, DC, June 1998. 



BIBLIOGRAPHY 198 

[28] K. Meadows. A study of fundamental shock noise mechanisms. Technical Report 

TP-3605, NASA, 1997. 

[29] T. D. Norum. Screech suppression in supersonic jets. AIAA Journal, 21(2):235- 

240, February 1983. 

[30] T. D. Norum and J. M. Seiner.  Broadband shock noise from supersonic jets. 

AIAA Journal, 20(l):68-73, January 1982. 

[31] V. E. Ostashev. Acoustics in Moving Imhomogeneous Media. E. and F. N. Spon, 
1997. 

[32] D. C. Pack. A note on Prandtl's formula for the wavelength of a supersonic gas 

jet. Quarterly Journal of Mechanics and Applied Mathematics, 3:173-181, 1950. 

[33] J. Panda. Shock oscillation in underexpanded screeching jets. Journal of Fluid 

Mechanics, 363:173-198, 1998. 

[34] J. Panda, G. Raman, and K. B. M. Q. Zaman. Underexpanded screeching 

jets from circular, rectangular, and elliptic nozzles. In A Collection of the 3rd 

AIAA/CEAS Aeroacoustics Conference and Exhibit Technical Papers, number 

AIAA-97-1623, Atlanta, Georgia, May 12-14 1997. 

[35] R. T. Pierrehumbert and S. E. Widnall. The two- and three-dimensional insta- 

bilities of a spatially periodic shear layer. Journal of Fluid Mechanics, 114:59-82, 
1982. 

[36] T. J. Poinsot and S. K. Lele. Boundary conditions for direct simulations of 

compressible viscous flows. Journal of Computational Physics, 101(1): 104-128, 
1992. 

[37] L. J. Poldervaart, A. T. Vink, and A. P. J. Wijnands. The photographic evidence 

of the feedback loop of a two dimensional screeching supersonic jet of air. In 

Proceedings of the 6th International Congress on Acoustics, Tokyo, Japan, 1968. 

[38] A. Powell. On edge tones and associated phenomena. Acustica, 3:233-243, 1953. 



BIBLIOGRAPHY 199 

[39] A. Powell. On the mechanism of choked jet noise. Proceedings of the Physical 

Society (London), 66:1039-1056, 1953. 

[40] A. Powell. On the noise emanating from a two-dimensional jet above the critical 

pressure. Aeronautical Quarterly, 4(2):103-122, February 1953. 

[41] A. Powell. The reduction of choked jet noise. Proceedings of the Physical Society 

of London B, 67(4):313-327, 1954 

[42] L. Prandtl. Stationary waves in a gaseous jet. Phys. Z., 5:599-601, 1904. 

[43] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical 

Recipes in Fortran 77: The Art of Scientific Computing. Cambridge University 
Press, 2nd edition, 1992. 

[44] G. Raman. Cessation of screech in underexpanded jets. Journal of Fluid Me- 

chanics, 336:69-90, 1997. 

[45] G. Raman. Screech tones from rectangular jets with spanwise oblique shock-cell 

structures. Journal of Fluid Mechanics, 330:141-168, 1997. 

[46] G. Raman, Advances in understanding supersonic jet screech: Review and per- 

spective. Progress in Aerospace Sciences, 34:45-106, 1998. 

[47] G. Raman. Supersonic jet screech: Half-century from Powell to the present. 

Journal of Sound and Vibration, 225(3):543-571, 1999. 

[48] G. Raman and E. J. Rice. Instability modes excited by natural screech tones in 

a supersonic rectangular jet. Physics of Fluids, 6:3999-4008, 1994. 

[49] G. Raman and R. Taghavi. Resonant interaction of a linear array of supersonic 

rectangular jets: an experimental study. Journal of Fluid Mechanics, 309:93-111, 
1996. 

[50] G. Raman and R Taghavi. Coupling of twin rectangular supersonic jets. Journal 

of Fluid Mechanics, 354:123-146, 1998. 



BIBLIOGRAPHY 200 

[51] H. S. Ribner. Cylindrical sound wave generated by shock-vortex interaction. 

AIAA Journal, 23(11): 1708-1714, 1985. 

[52] A. Rona and X. Zhang. Jet screech source model by CFD and acoustic analogy. 

In Proceedings o/FEDSM '99: 1999 ASME Fluids Engineering Division Summer 

Meeting, number FEDSM99-7239, San Francisco, CA, July 18-23 1999. 

[53] H. Schlichting. Boundary Layer Theory. McGraw-Hill, 1979. 

[54] J. M. Seiner. Impact of dynamic loads on propulsion integration. In Proceedings 

of AGARD Meeting on Structures, Norway, May 3-7 1994. AGARD. 

[55] J. M. Seiner, J. C. Manning, and M. K. Ponton. Model and full scale study of 

twin supersonic plume resonance. In 25th AIAA Aerospace Sciences Meeting and 

Exhibit, AIAA-87-0244, Reno, NV, January 1987. 

[56] J. M. Seiner and T. D. Norum. Experiments in shock associated noise of super- 

sonic jets. AIAA-79-1526, 1979. 

[57] H. Shen and C. K. W. Tarn. Numerical simulation of the generation of axisym- 

metric mode jet screech tones. AIAA Journal, 36(10):1801-1807, 1998. 

[58] C.-W. Shu and S. Osher. Efficiimt implementation of essentially non-oscillatory 

shock-capturing schemes. Journal of Computational Physics, 77:439-471, 1988. 

[59] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory 

shock-capturing schemes, ii. Journal of Computational Physics, 83:32-78, 1989. 

[60] J. T. Stuart. On finite amplitude oscillations in laminar mixing layers. Journal 

of Fluid Mechanics, 29:417-440, 1967. 

[61] H. Suda, T. A. Manning, and S. Kaji. Transition of oscillation modes of rectan- 

gular supersonic jet in screech. In 15th AIAA Aeroacoustics Conference, AIAA- 

93-4323, Long Beach, CA, October 25-27 1993. 



BIBLIOGRAPHY 201 

[62] C. K. W. Tarn. Stochastic model theory of broadband shock associated noise 

from supersonic jets. Journal of Sound and Vibration, 116(2):265-302, July 22 

1987. 

[63] C. K. W. Tarn. Computational aeroacoustics: Issues and methods. AIAA Jour- 

nal, 33(10):1788-1796, 1995. 

[64] C. K. W. Tarn. Jet noise generated by large-scale coherent motion. In Harvey H. 

Hubbard, editor, Aeroacoustics of Flight Vehicles: Theory and Practice, vol- 

ume 1: Noise Sources, chapter 6, pages 311-390. Acoustical Society of America 

through the American Institute of Physics, 1995. 

[65] C. K. W. Tarn. Supersonic jet noise. Annual Review of Fluid Mechanics, 27:17- 

43, 1995. 

[66] C. K. W. Tarn, K. K. Ahuja, and R. R. Jones III. Screech tones from free and 

ducted supersonic jets. AIAA Journal, 32(5):917-922, May 1994. 

[67] C. K. W. Tarn and D. E. Burton. Sound generated by instability waves of super- 

sonic flows. Part 2: Axisymmetricjets. Journal of Fluid Mechanics, 138:273-295, 

1984. 

[68] C. K. W. Tam and K. C. Chen. A statistical model of turbulence in two- 

dimensional mixing layers. Journal of Fluid Mechanics, 92:303-326, 1979. 

[69] C. K. W. Tam and F. Q. Hu. On the three families of instability waves of high 

speed jets. Journal of Fluid Mechanics, 201:447-483, April 1989. 

[70] C. K. W. Tam, J. A. Jackson, and J. M. Seiner. A multiple-scales model of 

shock-cell structure of imperfectly expanded supersonic jets. Journal of Fluid 

Mechanics, 153:123-149, 1985. 

[71] C. K. W. Tam, J. M. Seiner, and J. C. Yu. Proposed relationship between broad- 

band shock associated noise and screech tones. Journal of Sound and Vibration, 

110(2):309-321, 1986. 



BIBLIOGRAPHY 202 

[72] C. K. W. Tarn, H. Shen, and G. Raman. Screech tones of supersonic jets from 

bevelled rectangular nozzles. AIAA Journal, 35:1119-1125, 1997. 

[73] C. K. W. Tarn and H. K. Tanna. Shock associated noise of supersonic jets from 

convergent-divergent nozzles. Journal of Sound and Vibration, 81 (3):337-358, 

1982. 

[74] K. W. Thompson. Time dependent boundary conditions for hyperbolic systems. 

Journal of Computational Physics, 68:1-24, 1987. 

[75] Y. Umeda and R. Ishii. Oscillation modes of underexpanded jets issuing from 

square and equilateral triangular nozzles. Journal of the Acoustical Society of 

America, 95:1853-1857, 1994. 

[76] S. H. Walker and F. O. Thomas. Experiments characterizing nonlinear shear 

layer dynamics in a supersonic rectangular jet undergoing screech. Physics of 

Fluids, 9:2562-2579, September 1997. 

[77] R. Westley and J. H. Woolley. An investigation of the near noise fields of a 

choked axisymmetric jet. In Proceedings of the AFOSR-UTIAS Symposium held 

at Toronto, pages 147-167, May 20-21 1968. 

[78] F. M. White. Viscous Fluid Flow. McGraw-Hill, 2nd edition, 1991. 

[79] Alan A. Wray. Very low storage time-advancement schemes. Technical report, 

NASA Ames Research Center, Moffett Field, California, 1986. Internal Report. 

[80] J. C. Yu and J. M. Seiner. Near field observations of tones generated from 

supersonic jet flows. Journal of Sound and Vibration, 205:698-705, 1983. 

[81] E. Zauderer. Partial Differential Equations of Applied Mathematics. Wiley, 1989. 


